BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

668 related articles for article (PubMed ID: 33805598)

  • 1. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth.
    Kreps LM; Addison CL
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets.
    Szebeni GJ; Vizler C; Nagy LI; Kitajka K; Puskas LG
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Insights about the Wnt/β-Catenin Signaling Pathway in Primary Bone Tumors and Their Microenvironment: A Promising Target to Develop Therapeutic Strategies?
    Danieau G; Morice S; Rédini F; Verrecchia F; Royer BB
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runx2 Deficiency in Osteoblasts Promotes Myeloma Progression by Altering the Bone Microenvironment at New Bone Sites.
    Xu X; Zhang C; Trotter TN; Gowda PS; Lu Y; Ponnazhagan S; Javed A; Li J; Yang Y
    Cancer Res; 2020 Mar; 80(5):1036-1048. PubMed ID: 31911552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumour dormancy in inflammatory microenvironment: A promising therapeutic strategy for cancer-related bone metastasis.
    Hu W; Zhang L; Dong Y; Tian Z; Chen Y; Dong S
    Cell Mol Life Sci; 2020 Dec; 77(24):5149-5169. PubMed ID: 32556373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment.
    Li Z; Xiao J; Wu X; Li W; Yang Z; Xie J; Xu L; Cai X; Lin Z; Guo W; Luo J; Liu M
    Curr Mol Med; 2012 Sep; 12(8):967-81. PubMed ID: 22574935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Immune Landscape of Osteosarcoma: Implications for Prognosis and Treatment Response.
    Cascini C; Chiodoni C
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New therapeutic targets for cancer bone metastasis.
    Krzeszinski JY; Wan Y
    Trends Pharmacol Sci; 2015 Jun; 36(6):360-73. PubMed ID: 25962679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparanase: From basic research to therapeutic applications in cancer and inflammation.
    Vlodavsky I; Singh P; Boyango I; Gutter-Kapon L; Elkin M; Sanderson RD; Ilan N
    Drug Resist Updat; 2016 Nov; 29():54-75. PubMed ID: 27912844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer.
    Futakuchi M; Fukamachi K; Suzui M
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt B):206-211. PubMed ID: 26656603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming immunosuppression in bone metastases.
    Reinstein ZZ; Pamarthy S; Sagar V; Costa R; Abdulkadir SA; Giles FJ; Carneiro BA
    Crit Rev Oncol Hematol; 2017 Sep; 117():114-127. PubMed ID: 28600175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloid-derived suppressor cells and tumor: Current knowledge and future perspectives.
    Safari E; Ghorghanlu S; Ahmadi-Khiavi H; Mehranfar S; Rezaei R; Motallebnezhad M
    J Cell Physiol; 2019 Jul; 234(7):9966-9981. PubMed ID: 30537008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunosuppressive cells in tumor immune escape and metastasis.
    Liu Y; Cao X
    J Mol Med (Berl); 2016 May; 94(5):509-22. PubMed ID: 26689709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells.
    Cai J; Cui Y; Yang J; Wang S
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188564. PubMed ID: 33974950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Techniques to Study the Bone-Tumor Microenvironment.
    Shupp AB; Kolb AD; Bussard KM
    Adv Exp Med Biol; 2020; 1225():1-18. PubMed ID: 32030644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathological Crosstalk between Metastatic Breast Cancer Cells and the Bone Microenvironment.
    Zarrer J; Haider MT; Smit DJ; Taipaleenmäki H
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32092997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer.
    Wu AC; He Y; Broomfield A; Paatan NJ; Harrington BS; Tseng HW; Beaven EA; Kiernan DM; Swindle P; Clubb AB; Levesque JP; Winkler IG; Ling MT; Srinivasan B; Hooper JD; Pettit AR
    J Pathol; 2016 Jun; 239(2):218-30. PubMed ID: 27174786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tasquinimod inhibits prostate cancer growth in bone through alterations in the bone microenvironment.
    Magnusson LU; Hagberg Thulin M; Plas P; Olsson A; Damber JE; Welén K
    Prostate; 2016 Mar; 76(4):383-93. PubMed ID: 26660725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune Modulation of Metastatic Niche Formation in the Bone.
    Cheng X; Wang Z
    Front Immunol; 2021; 12():765994. PubMed ID: 34745140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-targeting agents in prostate cancer.
    Suzman DL; Boikos SA; Carducci MA
    Cancer Metastasis Rev; 2014 Sep; 33(2-3):619-28. PubMed ID: 24398856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.