BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33805707)

  • 1. Metabolome Analysis of Constituents in Membrane Vesicles for
    Ichikawa S; Tsuge Y; Karita S
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33805707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulosomes localise on the surface of membrane vesicles from the cellulolytic bacterium Clostridium thermocellum.
    Ichikawa S; Ogawa S; Nishida A; Kobayashi Y; Kurosawa T; Karita S
    FEMS Microbiol Lett; 2019 Jun; 366(12):. PubMed ID: 31260052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition and yield of non-cellulosic and cellulosic sugars in soluble and particulate fractions during consolidated bioprocessing of poplar biomass by Clostridium thermocellum.
    Biswal AK; Hengge NN; Black IM; Atmodjo MA; Mohanty SS; Ryno D; Himmel ME; Azadi P; Bomble YJ; Mohnen D
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):23. PubMed ID: 35227303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of alternative sigma-I7 factor induces the transcription of cellulosomal genes in the cellulolytic bacterium Clostridium thermocellum.
    Ichikawa S; Ito D; Asaoka S; Abe R; Katsuo N; Ito T; Ito D; Karita S
    Enzyme Microb Technol; 2022 May; 156():110002. PubMed ID: 35168167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding Biomass-Sensing Regulons of Clostridium thermocellum Alternative Sigma-I Factors in a Heterologous Bacillus subtilis Host System.
    Muñoz-Gutiérrez I; Ortiz de Ora L; Rozman Grinberg I; Garty Y; Bayer EA; Shoham Y; Lamed R; Borovok I
    PLoS One; 2016; 11(1):e0146316. PubMed ID: 26731480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass.
    Shao X; Jin M; Guseva A; Liu C; Balan V; Hogsett D; Dale BE; Lynd L
    Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic strategy for constructing
    Chang JJ; Anandharaj M; Ho CY; Tsuge K; Tsai TY; Ke HM; Lin YJ; Ha Tran MD; Li WH; Huang CC
    Biotechnol Biofuels; 2018; 11():157. PubMed ID: 29930703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases.
    Ichikawa S; Karita S
    FEMS Microbiol Lett; 2015 Dec; 362(24):fnv202. PubMed ID: 26490947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose production from cellulose through biological simultaneous enzyme production and saccharification using recombinant bacteria expressing the β-glucosidase gene.
    Ichikawa S; Ichihara M; Ito T; Isozaki K; Kosugi A; Karita S
    J Biosci Bioeng; 2019 Mar; 127(3):340-344. PubMed ID: 30237013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Draft genome sequence of the cellulolytic Clostridium thermocellum wild-type strain BC1 playing a role in cellulosic biomass degradation.
    Koeck DE; Wibberg D; Koellmeier T; Blom J; Jaenicke S; Winkler A; Albersmeier A; Zverlov VV; Pühler A; Schwarz WH; Schlüter A
    J Biotechnol; 2013 Oct; 168(1):62-3. PubMed ID: 23968723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unique set of putative membrane-associated anti-sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation.
    Kahel-Raifer H; Jindou S; Bahari L; Nataf Y; Shoham Y; Bayer EA; Borovok I; Lamed R
    FEMS Microbiol Lett; 2010 Jul; 308(1):84-93. PubMed ID: 20487018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material.
    Izquierdo JA; Pattathil S; Guseva A; Hahn MG; Lynd LR
    Biotechnol Biofuels; 2014; 7(1):136. PubMed ID: 25426163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆.
    Singh N; Mathur AS; Gupta RP; Barrow CJ; Tuli D; Puri M
    Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis cell envelopes.
    Chauvaux S; Matuschek M; Beguin P
    J Bacteriol; 1999 Apr; 181(8):2455-8. PubMed ID: 10198008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of
    Tian L; Perot SJ; Stevenson D; Jacobson T; Lanahan AA; Amador-Noguez D; Olson DG; Lynd LR
    Biotechnol Biofuels; 2017; 10():276. PubMed ID: 29213320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum.
    Rydzak T; Garcia D; Stevenson DM; Sladek M; Klingeman DM; Holwerda EK; Amador-Noguez D; Brown SD; Guss AM
    Metab Eng; 2017 May; 41():182-191. PubMed ID: 28400329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure.
    Dumitrache A; Akinosho H; Rodriguez M; Meng X; Yoo CG; Natzke J; Engle NL; Sykes RW; Tschaplinski TJ; Muchero W; Ragauskas AJ; Davison BH; Brown SD
    Biotechnol Biofuels; 2016; 9():31. PubMed ID: 26855670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.
    Tian L; Papanek B; Olson DG; Rydzak T; Holwerda EK; Zheng T; Zhou J; Maloney M; Jiang N; Giannone RJ; Hettich RL; Guss AM; Lynd LR
    Biotechnol Biofuels; 2016; 9():116. PubMed ID: 27257435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.