BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33805875)

  • 1. Enzymatic and Chemical Cross-Linking of Bacterial Cellulose/Fish Collagen Composites-A Comparative Study.
    Sommer A; Dederko-Kantowicz P; Staroszczyk H; Sommer S; Michalec M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose.
    Wang X; Xie Y; Ge H; Chen L; Wang J; Zhang S; Guo Y; Li Z; Feng X
    Carbohydr Polym; 2018 Jan; 179():207-220. PubMed ID: 29111045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-cellulose composite films with cellulose matrix and Napier grass cellulose fibril fillers.
    Senthil Muthu Kumar T; Rajini N; Obi Reddy K; Varada Rajulu A; Siengchin S; Ayrilmis N
    Int J Biol Macromol; 2018 Jun; 112():1310-1315. PubMed ID: 29408356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process.
    Gea S; Reynolds CT; Roohpour N; Wirjosentono B; Soykeabkaew N; Bilotti E; Peijs T
    Bioresour Technol; 2011 Oct; 102(19):9105-10. PubMed ID: 21835613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active biodegradable films based on the whole potato peel incorporated with bacterial cellulose and curcumin.
    Xie Y; Niu X; Yang J; Fan R; Shi J; Ullah N; Feng X; Chen L
    Int J Biol Macromol; 2020 May; 150():480-491. PubMed ID: 32007551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and structural property analysis of bacterial cellulose composites.
    Dayal MS; Catchmark JM
    Carbohydr Polym; 2016 Jun; 144():447-53. PubMed ID: 27083837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation.
    Iqbal HM; Kyazze G; Tron T; Keshavarz T
    Carbohydr Polym; 2014 Nov; 113():131-7. PubMed ID: 25256467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of polypyrrole/bacterial cellulose nanocomposites.
    Muller D; Rambo CR; Porto LM; Schreiner WH; Barra GM
    Carbohydr Polym; 2013 Apr; 94(1):655-62. PubMed ID: 23544587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells.
    L Cacicedo M; E León I; S Gonzalez J; M Porto L; A Alvarez V; Castro GR
    Colloids Surf B Biointerfaces; 2016 Apr; 140():421-429. PubMed ID: 26784658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications.
    Ul-Islam M; Khan T; Park JK
    Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilisation of heparin on bacterial cellulose-chitosan nano-fibres surfaces via the cross-linking technique.
    Wang J; Wan Y; Huang Y
    IET Nanobiotechnol; 2012 Jun; 6(2):52-7. PubMed ID: 22559707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cellulose-poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) composites for optoelectronic applications.
    Khan S; Ul-Islam M; Khattak WA; Ullah MW; Park JK
    Carbohydr Polym; 2015; 127():86-93. PubMed ID: 25965460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ glyoxalization during biosynthesis of bacterial cellulose.
    Castro C; Cordeiro N; Faria M; Zuluaga R; Putaux JL; Filpponen I; Velez L; Rojas OJ; Gañán P
    Carbohydr Polym; 2015 Aug; 126():32-9. PubMed ID: 25933519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion of SiC nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties.
    Kisku SK; Dash S; Swain SK
    Carbohydr Polym; 2014 Jan; 99():306-10. PubMed ID: 24274511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate.
    Figueiredo AR; Figueiredo AG; Silva NH; Barros-Timmons A; Almeida A; Silvestre AJ; Freire CS
    Carbohydr Polym; 2015 Jun; 123():443-53. PubMed ID: 25843878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber.
    Zhu G; Dufresne A
    Carbohydr Polym; 2022 Feb; 278():118954. PubMed ID: 34973770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of collagen with a natural cross-linker, procyanidin.
    He L; Mu C; Shi J; Zhang Q; Shi B; Lin W
    Int J Biol Macromol; 2011 Mar; 48(2):354-9. PubMed ID: 21185325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS.5.
    Saleh AK; Soliman NA; Farrag AA; Ibrahim MM; El-Shinnawy NA; Abdel-Fattah YR
    Int J Biol Macromol; 2020 Feb; 144():198-207. PubMed ID: 31843613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.