BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 33806009)

  • 1. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy.
    Choromańska A; Chwiłkowska A; Kulbacka J; Baczyńska D; Rembiałkowska N; Szewczyk A; Michel O; Gajewska-Naryniecka A; Przystupski D; Saczko J
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33806009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perturbing the Dynamics and Organization of Cell Membrane Components: A New Paradigm for Cancer-Targeted Therapies.
    Bernardes N; Fialho AM
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30518103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets.
    Kopecka J; Trouillas P; Gašparović AČ; Gazzano E; Assaraf YG; Riganti C
    Drug Resist Updat; 2020 Mar; 49():100670. PubMed ID: 31846838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents.
    Borrelli A; Tornesello AL; Tornesello ML; Buonaguro FM
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29385037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting acidity in diseased tissues: mechanism and applications of the membrane-inserting peptide, pHLIP.
    Deacon JC; Engelman DM; Barrera FN
    Arch Biochem Biophys; 2015 Jan; 565():40-8. PubMed ID: 25444855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipids as a target for drugs modulating multidrug resistance of cancer cells.
    Hendrich AB; Michalak K
    Curr Drug Targets; 2003 Jan; 4(1):23-30. PubMed ID: 12528987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma membrane ion channels and epithelial to mesenchymal transition in cancer cells.
    Azimi I; Monteith GR
    Endocr Relat Cancer; 2016 Nov; 23(11):R517-R525. PubMed ID: 27619258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in tumour-targeted drug delivery based on cell-penetrating peptides.
    Kong X; Xu J; Yang X; Zhai Y; Ji J; Zhai G
    J Drug Target; 2022 Jan; 30(1):46-60. PubMed ID: 33944641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical Methods for Drug and Gene Delivery Through the Cell Plasma Membrane.
    Jakutavičiūtė M; Ruzgys P; Tamošiūnas M; Maciulevičius M; Šatkauskas S
    Adv Anat Embryol Cell Biol; 2017; 227():73-92. PubMed ID: 28980041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells.
    Benfield AH; Defaus S; Lawrence N; Chaousis S; Condon N; Cheneval O; Huang YH; Chan LY; Andreu D; Craik DJ; Henriques ST
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183480. PubMed ID: 32979382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric peptide engineered exosomes for dual-stage light guided plasma membrane and nucleus targeted photodynamic therapy.
    Cheng H; Fan JH; Zhao LP; Fan GL; Zheng RR; Qiu XZ; Yu XY; Li SY; Zhang XZ
    Biomaterials; 2019 Aug; 211():14-24. PubMed ID: 31078049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atorvastatin Modulates the Efficacy of Electroporation and Calcium Electrochemotherapy.
    Szlasa W; Kiełbik A; Szewczyk A; Novickij V; Tarek M; Łapińska Z; Saczko J; Kulbacka J; Rembiałkowska N
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane blebbing as a recovery manoeuvre in site-specific sonoporation mediated by targeted microbubbles.
    Leow RS; Wan JM; Yu AC
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25694544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterial-induced autophagy: a new reversal MDR tool in cancer therapy?
    Panzarini E; Dini L
    Mol Pharm; 2014 Aug; 11(8):2527-38. PubMed ID: 24921216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition Sites for Cancer-targeting Drug Delivery Systems.
    Guan S; Zhang Q; Bao J; Hu R; Czech T; Tang J
    Curr Drug Metab; 2019; 20(10):815-834. PubMed ID: 31580248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective cancer therapy based on selective drug delivery into cells across their membrane using receptor-mediated endocytosis.
    Tashima T
    Bioorg Med Chem Lett; 2018 Oct; 28(18):3015-3024. PubMed ID: 30031619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane Derived Vesicles as Biomimetic Carriers for Targeted Drug Delivery System.
    Zhang LY; Yang X; Wang SB; Chen H; Pan HY; Hu ZM
    Curr Top Med Chem; 2020; 20(27):2472-2492. PubMed ID: 32962615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Cell Membrane-Coated Nanomaterials for Tumor Treatment.
    Zhu Y; Cui H; Zhang J; Bei Y; Huang Y; Li M; Liu J; Wu Y; Gao J
    Mini Rev Med Chem; 2023; 23(15):1535-1559. PubMed ID: 36740792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems.
    Tortorella S; Karagiannis TC
    Curr Drug Deliv; 2014; 11(4):427-43. PubMed ID: 24387131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug targeting opportunities en route to Ras nanoclusters.
    Pavic K; Chippalkatti R; Abankwa D
    Adv Cancer Res; 2022; 153():63-99. PubMed ID: 35101236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.