These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33806266)

  • 1. Artificial Neural Network-Based Prediction of the Optical Properties of Spherical Core-Shell Plasmonic Metastructures.
    Vahidzadeh E; Shankar K
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33806266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions.
    Xu X; Aggarwal D; Shankar K
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nanofabricated plasmonic core-shell-nanoparticle library.
    Susarrey-Arce A; Czajkowski KM; Darmadi I; Nilsson S; Tanyeli I; Alekseeva S; Antosiewicz TJ; Langhammer C
    Nanoscale; 2019 Nov; 11(44):21207-21217. PubMed ID: 31663581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topology optimization of dispersive plasmonic nanostructures in the time-domain.
    Hassan E; Calà Lesina A
    Opt Express; 2022 May; 30(11):19557-19572. PubMed ID: 36221729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTDT simulations of local plasmonic fields for theranostic core-shell gold-based nanoparticles.
    Kon I; Zyubin A; Samusev I
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):1398-1403. PubMed ID: 32902425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches.
    Adibnia E; Mansouri-Birjandi MA; Ghadrdan M; Jafari P
    Sci Rep; 2024 Mar; 14(1):5787. PubMed ID: 38461205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Neural Network Modelling for Optimizing the Optical Parameters of Plasmonic Paired Nanostructures.
    Verma S; Chugh S; Ghosh S; Rahman BMA
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDTD Simulations of Shell Scattering in Au@SiO
    Kon I; Zyubin A; Samusev I
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a Neural Network to Improve the Optical Absorption in Halide Perovskite Layers Containing Core-Shells Silver Nanoparticles.
    Nelson MD; Di Vece M
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30875956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating.
    Heidarzadeh H; Rostami A; Dolatyari M; Rostami G
    Appl Opt; 2016 Mar; 55(7):1779-85. PubMed ID: 26974643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse design of core-shell particles with discrete material classes using neural networks.
    Kuhn L; Repän T; Rockstuhl C
    Sci Rep; 2022 Nov; 12(1):19019. PubMed ID: 36347865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Optical Management in Organic Solar Cells by Virtue of Square-Lattice Triple Core-Shell Nanostructures.
    Gattu Subramanyam P; Krishnaswamy N; Guha K; Iannacci J; Ude EN; Muniswamy V
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility.
    Jahan T; Dash T; Arman SE; Inum R; Islam S; Jamal L; Yanik AA; Habib A
    Nanoscale; 2024 Sep; 16(35):16641-16651. PubMed ID: 39171500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic nanoparticle simulations and inverse design using machine learning.
    He J; He C; Zheng C; Wang Q; Ye J
    Nanoscale; 2019 Sep; 11(37):17444-17459. PubMed ID: 31531431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning based analysis of microstructured materials for thermal radiation control.
    Sullivan J; Mirhashemi A; Lee J
    Sci Rep; 2022 Jun; 12(1):9785. PubMed ID: 35697745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An aligned octahedral core in a nanocage: synthesis, plasmonic, and catalytic properties.
    Khairullina E; Mosina K; Choueiri RM; Paradis AP; Petruk AA; Sciaini G; Krivoshapkina E; Lee A; Ahmed A; Klinkova A
    Nanoscale; 2019 Feb; 11(7):3138-3144. PubMed ID: 30715071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional neural networks used for random structure SPP gratings spectral response prediction.
    Qu T; Zhu L; An Z
    Opt Lett; 2023 Jan; 48(2):448-451. PubMed ID: 36638480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Inverse Design of Materials and Structures via Deep Learning: Demonstration of Dipole Resonance Engineering Using Core-Shell Nanoparticles.
    So S; Mun J; Rho J
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24264-24268. PubMed ID: 31199610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting Structural Properties of Cortical Bone by Combining Ultrasonic Attenuation and an Artificial Neural Network (ANN): 2-D FDTD Study.
    Mohanty K; Yousefian O; Karbalaeisadegh Y; Ulrich M; Muller M
    Image Anal Recognit; 2019 Aug; 11662():407-417. PubMed ID: 38288296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Quick Method for Predicting Reflectance Spectra of Nanophotonic Devices via Artificial Neural Network.
    Wang R; Zhang B; Wang G; Gao Y
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.