These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33806357)

  • 41. Electrosorption of inorganic salts from aqueous solution using carbon aerogels.
    Gabelich CJ; Tran TD; Suffet IH
    Environ Sci Technol; 2002 Jul; 36(13):3010-9. PubMed ID: 12144279
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of Nanocellulose-Based Aerogel and Its Research Progress in Wastewater Treatment.
    Zhao J; Yuan X; Wu X; Liu L; Guo H; Xu K; Zhang L; Du G
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110772
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of Three-Dimensional Chitosan-Graphene Oxide Aerogel for Residue Oil Removal.
    Guo X; Qu L; Zhu S; Tian M; Zhang X; Sun K; Tang X
    Water Environ Res; 2016 Aug; 88(8):768-78. PubMed ID: 27456137
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contact-active antibacterial aerogels from cellulose nanofibrils.
    Henschen J; Illergård J; Larsson PA; Ek M; Wågberg L
    Colloids Surf B Biointerfaces; 2016 Oct; 146():415-22. PubMed ID: 27391038
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels.
    Mulyadi A; Zhang Z; Deng Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polyurethane Aerogels Based on Cyclodextrins: High-Capacity Desiccants Regenerated at Room Temperature by Reducing the Relative Humidity of the Environment.
    Rewatkar PM; Saeed AM; Majedi Far H; Donthula S; Sotiriou-Leventis C; Leventis N
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34292-34304. PubMed ID: 31490651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solvent-resistant CTAB-modified polymethylsilsesquioxane aerogels for organic solvent and oil adsorption.
    Lin YF; Hsu SH
    J Colloid Interface Sci; 2017 Jan; 485():152-158. PubMed ID: 27662027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comprehensive review of hydrophobic silica and composite aerogels: synthesis, properties and recent progress towards environmental remediation and biomedical applications.
    Akhter F; Jamali AR; Abbasi MN; Mallah MA; Rao AA; Wahocho SA; Anees-Ur-Rehman H; Chandio ZA
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11226-11245. PubMed ID: 36513899
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controllable synthesis of pomelo peel-based aerogel and its application in adsorption of oil/organic pollutants.
    Shi G; Qian Y; Tan F; Cai W; Li Y; Cao Y
    R Soc Open Sci; 2019 Feb; 6(2):181823. PubMed ID: 30891289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels.
    Ha H; Shanmuganathan K; Ellison CJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6220-9. PubMed ID: 25714662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyimide Aerogels Using Triisocyanate as Cross-linker.
    Nguyen BN; Meador MAB; Scheiman D; McCorkle L
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27313-27321. PubMed ID: 28737037
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels.
    Venkateswara Rao A; Hegde ND; Hirashima H
    J Colloid Interface Sci; 2007 Jan; 305(1):124-32. PubMed ID: 17067617
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb
    Qu P; Li Y; Huang H; Chen J; Yu Z; Huang J; Wang H; Gao B
    J Hazard Mater; 2020 Sep; 396():122664. PubMed ID: 32339875
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biocompatibility of surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and endothelial cells.
    Yin W; Venkitachalam SM; Jarrett E; Staggs S; Leventis N; Lu H; Rubenstein DA
    J Biomed Mater Res A; 2010 Mar; 92(4):1431-9. PubMed ID: 19358258
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles.
    Viganó J; Meirelles AAD; Náthia-Neves G; Baseggio AM; Cunha RL; Maróstica Junior MR; Meireles MAA; Gurikov P; Smirnova I; Martínez J
    Int J Biol Macromol; 2020 Jul; 155():1060-1068. PubMed ID: 31712155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis, structures and properties of hydrophobic Alkyltrimethoxysilane-Polyvinyltrimethoxysilane hybrid aerogels with different alkyl chain lengths.
    Fashandi M; Karamikamkar S; Leung SN; Naguib HE; Hong J; Liang B; Park CB
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):720-734. PubMed ID: 34628328
    [TBL] [Abstract][Full Text] [Related]  

  • 57. HTO/Cellulose Aerogel for Rapid and Highly Selective Li
    Qian H; Huang S; Ba Z; Wang W; Yu F; Liang D; Xie Y; Wang Y; Wang Y
    Molecules; 2021 Jul; 26(13):. PubMed ID: 34279394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins.
    Chen K; Zhang H
    Int J Biol Macromol; 2019 Sep; 136():936-943. PubMed ID: 31229541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents.
    Korhonen JT; Kettunen M; Ras RH; Ikkala O
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1813-6. PubMed ID: 21627309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin.
    Rocher V; Bee A; Siaugue JM; Cabuil V
    J Hazard Mater; 2010 Jun; 178(1-3):434-9. PubMed ID: 20153928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.