These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33806388)

  • 1. An Intelligent Human-Unmanned Aerial Vehicle Interaction Approach in Real Time Based on Machine Learning Using Wearable Gloves.
    Müezzinoğlu T; Karaköse M
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33806388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion Estimation and Hand Gesture Recognition-Based Human-UAV Interaction Approach in Real Time.
    Yoo M; Na Y; Song H; Kim G; Yun J; Kim S; Moon C; Jo K
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMART SKY EYE System for Preliminary Structural Safety Assessment of Buildings Using Unmanned Aerial Vehicles.
    Bae J; Lee J; Jang A; Ju YK; Park MJ
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Drone Controller: Machine Learning-Based Hand Gesture Recognition and Vibrotactile Feedback.
    Lee JW; Yu KH
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gyroscope-Based Continuous Human Hand Gesture Recognition for Multi-Modal Wearable Input Device for Human Machine Interaction.
    Han H; Yoon SW
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31195620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internet of things enabled deep learning methods using unmanned aerial vehicles enabled integrated farm management.
    Mishra S
    Heliyon; 2023 Aug; 9(8):e18659. PubMed ID: 37576187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue.
    Liu C; Szirányi T
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Real-Time Gesture Recognition Scheme Based on A-Mode Ultrasound.
    Lu Z; Cai S; Chen B; Liu Z; Guo L; Yao L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2623-2629. PubMed ID: 36074871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A meta-analysis of human-system interfaces in unmanned aerial vehicle (UAV) swarm management.
    Hocraffer A; Nam CS
    Appl Ergon; 2017 Jan; 58():66-80. PubMed ID: 27633199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable-Sensors-Based Platform for Gesture Recognition of Autism Spectrum Disorder Children Using Machine Learning Algorithms.
    Siddiqui UA; Ullah F; Iqbal A; Khan A; Ullah R; Paracha S; Shahzad H; Kwak KS
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34064750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams.
    Jin Y; Liao Y; Minai AA; Polycarpou MM
    IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):571-87. PubMed ID: 16761811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vehicle-Assisted UAV Delivery Scheme Considering Energy Consumption for Instant Delivery.
    Deng X; Guan M; Ma Y; Yang X; Xiang T
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Cognitive Radio with Unmanned Aerial Vehicles: An Overview.
    Dias Santana GM; Cristo RS; Lucas Jaquie Castelo Branco KR
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33513689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques.
    Chamola V; Kotesh P; Agarwal A; Naren ; Gupta N; Guizani M
    Ad Hoc Netw; 2021 Feb; 111():102324. PubMed ID: 33071687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid-Flexible Bimodal Sensing Wearable Glove System for Complex Hand Gesture Recognition.
    Pan J; Li Y; Luo Y; Zhang X; Wang X; Wong DLT; Heng CH; Tham CK; Thean AV
    ACS Sens; 2021 Nov; 6(11):4156-4166. PubMed ID: 34726380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation Generation for Multiple Unmanned Vehicles Using Multi-Agent Hybrid Social Cognitive Optimization Based on the Internet of Things.
    Yao Z; Wu S; Wen Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural Control and Online Learning for Speed Adaptation of Unmanned Aerial Vehicles.
    Jaiton V; Rothomphiwat K; Ebeid E; Manoonpong P
    Front Neural Circuits; 2022; 16():839361. PubMed ID: 35547643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. White shark optimizer with optimal deep learning based effective unmanned aerial vehicles communication and scene classification.
    Nadana Ravishankar T; Ramprasath M; Daniel A; Selvarajan S; Subbiah P; Balusamy B
    Sci Rep; 2023 Dec; 13(1):23041. PubMed ID: 38155207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centralized Unmanned Aerial Vehicle Mesh Network Placement Scheme: A Multi-Objective Evolutionary Algorithm Approach.
    Sabino S; Horta N; Grilo A
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning Method for Vision-Based Unmanned Aerial Vehicle Systems to Understand Unknown Environments.
    Zhang T; Hu X; Xiao J; Zhang G
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.