These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33806486)

  • 21. Toward Robust Macroscale Superlubricity on Engineering Steel Substrate.
    Li P; Ju P; Ji L; Li H; Liu X; Chen L; Zhou H; Chen J
    Adv Mater; 2020 Sep; 32(36):e2002039. PubMed ID: 32715515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: a computational investigation.
    Song A; Gao L; Zhang J; Liu X; Hu YZ; Ma TB; Zheng Q; Luo J
    Nanoscale; 2020 Apr; 12(14):7857-7863. PubMed ID: 32227006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust microscale superlubricity under high contact pressure enabled by graphene-coated microsphere.
    Liu SW; Wang HP; Xu Q; Ma TB; Yu G; Zhang C; Geng D; Yu Z; Zhang S; Wang W; Hu YZ; Wang H; Luo J
    Nat Commun; 2017 Feb; 8():14029. PubMed ID: 28195130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Tribological-Performance Polymer Nanocomposites: An Approach Based on the Superlubricity State of the Graphene Oxide Agglomerates.
    Ferreira EHC; Vieira AA; Vieira L; Fechine GJM
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34300995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deformation Coupled Moiré Mapping of Superlubricity in Graphene.
    Bai H; Zou G; Bao H; Li S; Ma F; Gao H
    ACS Nano; 2023 Jul; 17(13):12594-12602. PubMed ID: 37338168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superlubricity between MoS
    Li H; Wang J; Gao S; Chen Q; Peng L; Liu K; Wei X
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural superlubricity at the interface of penta-BN
    Wang H; Zhang H; Zhang X; Cao T; Shi J; Fan X
    Phys Chem Chem Phys; 2024 Jul; 26(27):18871-18880. PubMed ID: 38946706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Frictional Properties of Nanojunctions Including Atomically Thin Sheets.
    Ouyang W; Ma M; Zheng Q; Urbakh M
    Nano Lett; 2016 Mar; 16(3):1878-83. PubMed ID: 26829154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diamond-like carbon coating under oleic acid lubrication: Evidence for graphene oxide formation in superlow friction.
    De Barros Bouchet MI; Martin JM; Avila J; Kano M; Yoshida K; Tsuruda T; Bai S; Higuchi Y; Ozawa N; Kubo M; Asensio MC
    Sci Rep; 2017 Apr; 7():46394. PubMed ID: 28401962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study.
    Ying P; Natan A; Hod O; Urbakh M
    ACS Nano; 2024 Apr; 18(14):10133-10141. PubMed ID: 38546136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of Friction in Superlubric Graphite Contacts.
    Qu C; Wang K; Wang J; Gongyang Y; Carpick RW; Urbakh M; Zheng Q
    Phys Rev Lett; 2020 Sep; 125(12):126102. PubMed ID: 33016762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Static Distortion Waves on Superlubricity.
    Hörmann L; Cartus JJ; Hofmann OT
    ACS Omega; 2023 Nov; 8(45):42457-42466. PubMed ID: 38024737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size.
    Dietzel D; Brndiar J; Štich I; Schirmeisen A
    ACS Nano; 2017 Aug; 11(8):7642-7647. PubMed ID: 28715171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid Superlubricity Enabled by the Synergy Effect of Graphene Oxide and Lithium Salts.
    Ge X; Chai Z; Shi Q; Liu Y; Tang J; Wang W
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study.
    Wu P; Li P; Huang M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust superlubricity by strain engineering.
    Wang K; Ouyang W; Cao W; Ma M; Zheng Q
    Nanoscale; 2019 Jan; 11(5):2186-2193. PubMed ID: 30671572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing structural superlubricity of two-dimensional water transport with atomic resolution.
    Wu D; Zhao Z; Lin B; Song Y; Qi J; Jiang J; Yuan Z; Cheng B; Zhao M; Tian Y; Wang Z; Wu M; Bian K; Liu KH; Xu LM; Zeng XC; Wang EG; Jiang Y
    Science; 2024 Jun; 384(6701):1254-1259. PubMed ID: 38870285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superlubricity of graphene nanoribbons on gold surfaces.
    Kawai S; Benassi A; Gnecco E; Söde H; Pawlak R; Feng X; Müllen K; Passerone D; Pignedoli CA; Ruffieux P; Fasel R; Meyer E
    Science; 2016 Feb; 351(6276):957-61. PubMed ID: 26917767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.