These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33806561)

  • 1. Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices.
    You Y; Zhang B; Tao S; Liang Z; Tang B; Zhou R; Yuan D
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33806561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Thermal Dissipation of Al Heat Sink When Inserting Ceramic Powders by Ultrasonic Mechanical Coating and Armoring.
    Tsai WY; Huang GR; Wang KK; Chen CF; Huang JC
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Ambient Temperature on Radiative and Convective Heat Dissipation Ratio in Polymer Heat Sinks.
    Kominek J; Zachar M; Guzej M; Bartuli E; Kotrbacek P
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Radiative Copper Oxide Layer for Enhancing Heat Dissipation of Metal Surface.
    Park J; Kim D; Kim H; Lee J; Chung W
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of the Heat-Dissipating Performance of Powder Coating with Graphene.
    Kung F; Yang MC
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32531901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Surfactants on Graphene Dispersion and Thermal Performance for Heat Dissipation Coating.
    Cheng C; Shi WH; Teng TP; Yang CR
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.
    Zhang G; Jiang S; Yao W; Liu C
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31202-31211. PubMed ID: 27791353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure.
    Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z
    Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Influence of Geometry, Surface Texture, and Cooling Method on the Efficiency of Heat Dissipation through the Heat Sink-A Review.
    Grochalski K; Rukat W; Jakubek B; Wieczorowski M; Słowiński M; Sarbinowska K; Graboń W
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolayer graphene dispersion and radiative cooling for high power LED.
    Hsiao TJ; Eyassu T; Henderson K; Kim T; Lin CT
    Nanotechnology; 2013 Oct; 24(39):395401. PubMed ID: 24008305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Heat Dissipation by Laser Micro Structuring for LED Module.
    Lu L; Zhang Z; Guan Y; Zheng H
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene-Carbon-Metal Composite Film for a Flexible Heat Sink.
    Cho H; Rho H; Kim JH; Chae SH; Pham TV; Seo TH; Kim HY; Ha JS; Kim HC; Lee SH; Kim MJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40801-40809. PubMed ID: 29064660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing Heat Transfer from Metal Surfaces through Laser-Interference-Induced Microscopic Heat Sinks.
    Schell F; Chukwudi Okafor R; Steege T; Alamri S; Ghevariya S; Zwahr C; Lasagni AF
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials.
    Yu W; Duan Z; Zhang G; Liu C; Fan S
    Nano Lett; 2018 Mar; 18(3):1770-1776. PubMed ID: 29481093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection.
    Billiet M; De Schampheleire S; Huisseune H; De Paepe M
    Materials (Basel); 2015 Oct; 8(10):6792-6805. PubMed ID: 28793601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Lasting Heat Dissipation of Flexible Heat Sinks for Wearable Thermoelectric Devices.
    Ding Q; Sun X; Zhu Z; Yan S; Xia Z; Hou Y; Wang Z
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31228-31236. PubMed ID: 38849743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets.
    Nguyen N; Zhang S; Oluwalowo A; Park JG; Yao K; Liang R
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27171-27177. PubMed ID: 30020763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thermal dissipation by adding graphene materials to surface coating of LED lighting module.
    Kim S; Jeong JY; Han SH; Kim JH; Kwon KT; Hwang MK; Kim IT; Cho GS
    J Nanosci Nanotechnol; 2013 May; 13(5):3554-8. PubMed ID: 23858901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of the Temperature Difference Sensors to Control the Temperature Distribution in Processor Heat Sink.
    Markowski PM; Gierczak M; Dziedzic A
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31450725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties.
    Baig MMA; Hassan SF; Saheb N; Patel F
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.