These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 33806687)

  • 1. Elevated Temperature Tensile Creep Behavior of Aluminum Borate Whisker-Reinforced Aluminum Alloy Composites (ABOw/Al-12Si).
    Ji Y; Yuan Y; Zhang W; Xu Y; Liu Y
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior high creep resistance of in situ nano-sized TiC
    Wang L; Qiu F; Zhao Q; Zha M; Jiang Q
    Sci Rep; 2017 Jul; 7(1):4540. PubMed ID: 28674452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh-temperature tensile creep of TiC-reinforced Mo-Si-B-based alloy.
    Kamata SY; Kanekon D; Lu Y; Sekido N; Maruyama K; Eggeler G; Yoshimi K
    Sci Rep; 2018 Jul; 8(1):10487. PubMed ID: 29992968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural Evolution during Accelerated Tensile Creep Test of ZK60/SiC
    Wang YY; Jia C; Tayebi M; Hamawandi B
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solute-induced strengthening during creep of an aged-hardened Al-Mn-Zr alloy.
    Farkoosh AR; Dunand DC; Seidman DN
    Acta Mater; 2021 Oct; 219():. PubMed ID: 36247868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes.
    Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy.
    Cao C; Fu J; Tong T; Hao Y; Gu P; Hao H; Peng L
    Entropy (Basel); 2018 Dec; 20(12):. PubMed ID: 33266684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of silicon carbide whisker-silica heat treatment on the reinforcement of dental resin composites.
    Xu HH; Quinn JB
    J Biomed Mater Res; 2001; 58(1):81-7. PubMed ID: 11153002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation and Modeling of Damage Accumulation of EN-AW 2024 Aluminum Alloy under Creep Condition at Elevated Temperature.
    Tomczyk A; Seweryn A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33467471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural Changes Caused by the Creep Test in ZK60 Alloy Reinforced by SiC
    Wang YY; Jia C; Xu M; Kaseem M; Tayebi M
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot Deformation Behavior and Mechanisms of SiC Particle Reinforced Al-Zn-Mg-Cu Alloy Matrix Composites.
    Diao E; Fan J; Yang Z; Lv Z; Gao H; Nie J
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whisker-reinforced heat-cured dental resin composites: effects of filler level and heat-cure temperature and time.
    Xu HH
    J Dent Res; 2000 Jun; 79(6):1392-7. PubMed ID: 10890718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniaxial Tensile Behavior, Flexural Properties, Empirical Calculation and Microstructure of Multi-Scale Fiber Reinforced Cement-Based Material at Elevated Temperature.
    Li L; Khan M; Bai C; Shi K
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33917108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tensile creep behavior and mechanism of CoCrFeMnNi high entropy alloy.
    Song C; Li G; Li G; Zhang G; Cai B
    Micron; 2021 Nov; 150():103144. PubMed ID: 34534922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile Deformation and Fracture of Unreinforced AZ91 and Reinforced AZ91-C at Temperatures up to 300 °C.
    Alrasheedi NH; Ataya S; El-Sayed Seleman MM; Ahmed MMZ
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microstructure and creep behavior of cold rolled udimet 188 sheet.
    Boehlert CJ; Longanbach SC
    Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Fracture Behavior of a Creep Resistant 10% Cr Steel with High Boron and Low Nitrogen Contents at Low Temperatures.
    Mishnev R; Dudova N; Kaibyshev R; Belyakov A
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavitation-resistant intergranular precipitates enhance creep performance of
    Rakhmonov JU; Bahl S; Shyam A; Dunand DC
    Acta Mater; 2022 Apr; 228():. PubMed ID: 36439291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in Dry Sliding Wear Behavior between Al-12Si-CuNiMg Alloy and Its Composite Reinforced with Al
    Zhang Q; Gu J; Wei S; Qi M
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep Mechanisms of an Al-Cu-Mg Alloy at the Macro- and Micro-Scale: Effect of the S'/S Precipitate.
    Xu Y; Yang L; Zhan L; Yu H; Huang M
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31505758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.