These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33806805)

  • 1. The Experimental Registration of the Evanescent Acoustic Wave in YX LiNbO
    Smirnov A; Zaitsev B; Teplykh A; Nedospasov I; Golovanov E; Qian ZH; Wang B; Kuznetsova I
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation and detection of evanescent acoustic waves in piezoelectric plates: Theoretical and 2D FEM modeling.
    Kuznetsova I; Nedospasov I; Smirnov A; Qian ZH; Wang B; Dai XY
    Ultrasonics; 2019 Nov; 99():105961. PubMed ID: 31323560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Backward Acoustic Waves in Piezoelectric Plates: Possible Application as Base for Liquid Sensors.
    Smirnov A; Zaitsev B; Nedospasov I; Nazarov G; Kuznetsova I
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.
    Kuznetsova IE; Nedospasov IA; Kolesov VV; Qian Z; Wang B; Zhu F
    Ultrasonics; 2018 May; 86():6-13. PubMed ID: 29407280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet Printing of Plate Acoustic Wave Devices.
    Kuznetsova I; Smirnov A; Anisimkin V; Gubin S; Signore MA; Francioso L; Kondoh J; Kolesov V
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of QSH (quasi shear horizontal) acoustic waves in piezoelectric plates.
    Zaitsev BD; Joshi SG; Kuznetsova IE
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1298-302. PubMed ID: 18244322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and measurement of boundary waves at the interface between LiNbO3 and silicon.
    Gachon D; Daniau W; Courjon E; Laude V; Ballandras S; Majjad H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1655-63. PubMed ID: 20639159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic waves in a structure containing two piezoelectric plates separated by an air (vacuum) gap.
    Borodina IA; Zaitsev BD; Kuznetsova IE; Teplykh AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2677-81. PubMed ID: 24297033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Peculiarities of the Acoustic Waves of Zero-Order Focusing in Lithium Niobate Plate.
    Kuznetsova I; Nedospasov I; Smirnov A; Anisimkin V; Roshchupkin D; Signore MA; Francioso L; Kondoh J; Serebrov M; Kashin V; Kolesov V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phases of the SAW reflection and transmission coefficients for short reflectors on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; BĂ©reux N; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1671-82. PubMed ID: 15690727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simulated Investigation of Lithium Niobate Orientation Effects on Standing Acoustic Waves.
    Janardhana RD; Jackson N
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The power flow angle of acoustic waves in thin piezoelectric plates.
    Kuznetsova IE; Zaitsev BD; Teplykh AA; Joshi SG; Kuznetsova AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1984-91. PubMed ID: 18986894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short reflectors operating at the fundamental and second harmonics on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):343-51. PubMed ID: 15128221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the conductivity of a thin film located near the acoustic delay line on the characteristics of propagating SH
    Borodina IA; Zaitsev BD; Teplykh AA
    Ultrasonics; 2019 Jan; 91():62-67. PubMed ID: 30071454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New method of change in temperature coefficient delay of acoustic waves in thin piezoelectric plates.
    Zaitsev BD; Kuznetsova IE; Joshi SG; Kuznetsova AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2113-20. PubMed ID: 17091846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflection of plate acoustic waves produced by a periodic array of mechanical load strips or grooves.
    Joshi SG; Zaitsev BD; Kuznetsova IE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Dec; 49(12):1730-4. PubMed ID: 12546152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of viscous and conducting liquid on the characteristics of the slot acoustic wave.
    Borodina IA; Zaitsev BD; Teplykh AA
    Ultrasonics; 2018 Jan; 82():39-43. PubMed ID: 28743055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of acoustic waves of higher order propagating in plates of lithium niobate.
    Kuznetsova IE; Zaitsev BD; Borodina IA; Teplyh AA; Shurygin VV; Joshi SG
    Ultrasonics; 2004 Apr; 42(1-9):179-82. PubMed ID: 15047283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate.
    Kuznetsova IE; Zaitsev BD; Joshi SG; Borodina IA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):322-8. PubMed ID: 11367801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Surface Acoustic Wave Propagation Characteristics in New Multilayer Structure: SiO
    Zhang H; Wang H
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.