These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33807006)

  • 1. Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations.
    Day NJ; Gaffrey MJ; Qian WJ
    Antioxidants (Basel); 2021 Mar; 10(3):. PubMed ID: 33807006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cellular oxidative stress response by stoichiometric redox proteomics.
    Zhang T; Gaffrey MJ; Li X; Qian WJ
    Am J Physiol Cell Physiol; 2021 Feb; 320(2):C182-C194. PubMed ID: 33264075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol redox proteomics seen with fluorescent eyes: the detection of cysteine oxidative modifications by fluorescence derivatization and 2-DE.
    Izquierdo-Álvarez A; Martínez-Ruiz A
    J Proteomics; 2011 Dec; 75(2):329-38. PubMed ID: 21983555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms.
    Zaffagnini M; Fermani S; Marchand CH; Costa A; Sparla F; Rouhier N; Geigenberger P; Lemaire SD; Trost P
    Antioxid Redox Signal; 2019 Jul; 31(3):155-210. PubMed ID: 30499304
    [No Abstract]   [Full Text] [Related]  

  • 10. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis.
    Doron S; Lampl N; Savidor A; Katina C; Gabashvili A; Levin Y; Rosenwasser S
    Free Radic Biol Med; 2021 Nov; 176():366-377. PubMed ID: 34619326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Proteomes in Human Physiology and Disease Mechanisms.
    Mannaa A; Hanisch FG
    J Proteome Res; 2020 Jan; 19(1):1-17. PubMed ID: 31647248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-Redox Proteomics to Study Reversible Protein Thiol Oxidations in Bacteria.
    Rossius M; Hochgräfe F; Antelmann H
    Methods Mol Biol; 2018; 1841():261-275. PubMed ID: 30259492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.
    Slade WO; Werth EG; McConnell EW; Alvarez S; Hicks LM
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):631-40. PubMed ID: 25698223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory control or oxidative damage? Proteomic approaches to interrogate the role of cysteine oxidation status in biological processes.
    Held JM; Gibson BW
    Mol Cell Proteomics; 2012 Apr; 11(4):R111.013037. PubMed ID: 22159599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphorylated redox proteome of Chlamydomonas reinhardtii: Revealing novel means for regulation of protein structure and function.
    McConnell EW; Werth EG; Hicks LM
    Redox Biol; 2018 Jul; 17():35-46. PubMed ID: 29673699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox Proteomics Applied to the Thiol Secretome.
    Ghezzi P; Chan P
    Antioxid Redox Signal; 2017 Mar; 26(7):299-312. PubMed ID: 27139336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox Proteomics: A Key Tool for New Insights into Protein Modification with Relevance to Disease.
    Butterfield DA; Perluigi M
    Antioxid Redox Signal; 2017 Mar; 26(7):277-279. PubMed ID: 27835924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines.
    Duan J; Gaffrey MJ; Qian WJ
    Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins.
    Yao C; Behring JB; Shao D; Sverdlov AL; Whelan SA; Elezaby A; Yin X; Siwik DA; Seta F; Costello CE; Cohen RA; Matsui R; Colucci WS; McComb ME; Bachschmid MM
    PLoS One; 2015; 10(12):e0144025. PubMed ID: 26642319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.