These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 33807056)
1. Bioanalytical Method Development and Validation Study of Neuroprotective Extract of Kashmiri Saffron Using Ultra-Fast Liquid Chromatography-Tandem Mass Spectrometry (UFLC-MS/MS): In Vivo Pharmacokinetics of Apocarotenoids and Carotenoids. Girme A; Pawar S; Ghule C; Shengule S; Saste G; Balasubramaniam AK; Deshmukh A; Hingorani L Molecules; 2021 Mar; 26(6):. PubMed ID: 33807056 [TBL] [Abstract][Full Text] [Related]
2. Intestinal formation of trans-crocetin from saffron extract (Crocus sativus L.) and in vitro permeation through intestinal and blood brain barrier. Lautenschläger M; Sendker J; Hüwel S; Galla HJ; Brandt S; Düfer M; Riehemann K; Hensel A Phytomedicine; 2015 Jan; 22(1):36-44. PubMed ID: 25636868 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity. Mottaghipisheh J; Mahmoodi Sourestani M; Kiss T; Horváth A; Tóth B; Ayanmanesh M; Khamushi A; Csupor D J Pharm Biomed Anal; 2020 May; 184():113183. PubMed ID: 32105944 [TBL] [Abstract][Full Text] [Related]
4. Pharmacokinetic Properties of Saffron and its Active Components. Hosseini A; Razavi BM; Hosseinzadeh H Eur J Drug Metab Pharmacokinet; 2018 Aug; 43(4):383-390. PubMed ID: 29134501 [TBL] [Abstract][Full Text] [Related]
5. Improved quantification method of crocins in saffron extract using HPLC-DAD after qualification by HPLC-DAD-MS. Suchareau M; Bordes A; Lemée L Food Chem; 2021 Nov; 362():130199. PubMed ID: 34091167 [TBL] [Abstract][Full Text] [Related]
6. [In vitro evaluation of the chemopreventive potential of saffron]. Abdullaev Jafarova F; Caballero-Ortega H; Riverón-Negrete L; Pereda-Miranda R; Rivera-Luna R; Manuel Hernández J; Pérez-López I; Espinosa-Aguirre JJ Rev Invest Clin; 2002; 54(5):430-6. PubMed ID: 12587418 [TBL] [Abstract][Full Text] [Related]
7. Quality assessment of saffron (Crocus sativus L.) extracts via UHPLC-DAD-MS analysis and detection of adulteration using gardenia fruit extract (Gardenia jasminoides Ellis). Moras B; Loffredo L; Rey S Food Chem; 2018 Aug; 257():325-332. PubMed ID: 29622218 [TBL] [Abstract][Full Text] [Related]
8. Rapid isolation and characterization of crocins, picrocrocin, and crocetin from saffron using centrifugal partition chromatography and LC-MS. Karkoula E; Angelis A; Koulakiotis NS; Gikas E; Halabalaki M; Tsarbopoulos A; Skaltsounis AL J Sep Sci; 2018 Nov; 41(22):4105-4114. PubMed ID: 30232839 [TBL] [Abstract][Full Text] [Related]
10. Preparation, chemical characterization and determination of crocetin's pharmacokinetics after oral and intravenous administration of saffron (Crocus sativus L.) aqueous extract to C57/BL6J mice. Christodoulou E; Grafakou ME; Skaltsa E; Kadoglou N; Kostomitsopoulos N; Valsami G J Pharm Pharmacol; 2019 May; 71(5):753-764. PubMed ID: 30575029 [TBL] [Abstract][Full Text] [Related]
11. Effective isolation protocol for secondary metabolites from saffron: semi-preparative scale preparation of crocin-1 and trans-crocetin. Lautenschläger M; Lechtenberg M; Sendker J; Hensel A Fitoterapia; 2014 Jan; 92():290-5. PubMed ID: 24321578 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Bukhari SI; Manzoor M; Dhar MK Biomed Pharmacother; 2018 Feb; 98():733-745. PubMed ID: 29306211 [TBL] [Abstract][Full Text] [Related]
13. Effective Isolation of Picrocrocin and Crocins from Saffron: From HPTLC to Working Standard Obtaining. Jarukas L; Vitkevicius K; Mykhailenko O; Bezruk I; Georgiyants V; Ivanauskas L Molecules; 2022 Jul; 27(13):. PubMed ID: 35807531 [TBL] [Abstract][Full Text] [Related]
14. Saffron (Crocus sativus L.) extract attenuates chronic scopolamine-induced cognitive impairment, amyloid beta, and neurofibrillary tangles accumulation in rats. Patel KS; Dharamsi A; Priya M; Jain S; Mandal V; Girme A; Modi SJ; Hingorani L J Ethnopharmacol; 2024 May; 326():117898. PubMed ID: 38341114 [TBL] [Abstract][Full Text] [Related]
15. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Ochiai T; Shimeno H; Mishima K; Iwasaki K; Fujiwara M; Tanaka H; Shoyama Y; Toda A; Eyanagi R; Soeda S Biochim Biophys Acta; 2007 Apr; 1770(4):578-84. PubMed ID: 17215084 [TBL] [Abstract][Full Text] [Related]
16. Effects of saffron and its constituents, crocin-1, crocin-2, and crocetin on α-synuclein fibrils. Inoue E; Shimizu Y; Masui R; Hayakawa T; Tsubonoya T; Hori S; Sudoh K J Nat Med; 2018 Jan; 72(1):274-279. PubMed ID: 29147836 [TBL] [Abstract][Full Text] [Related]
17. Extracted apocarotenoids from saffron stigmas and evaluated the quality of saffron. Xiaobin F; Xiaodong Q; Shuwen H; Chong Y; Yumei Y; Guifen Z Nat Prod Res; 2018 Jan; 32(2):225-228. PubMed ID: 28629221 [TBL] [Abstract][Full Text] [Related]
18. Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension. Llorens S; Mancini A; Serrano-Díaz J; D'Alessandro AM; Nava E; Alonso GL; Carmona M Molecules; 2015 Sep; 20(9):17570-84. PubMed ID: 26402666 [TBL] [Abstract][Full Text] [Related]
19. Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma1 (sigma-1) receptors. Lechtenberg M; Schepmann D; Niehues M; Hellenbrand N; Wünsch B; Hensel A Planta Med; 2008 Jun; 74(7):764-72. PubMed ID: 18496783 [TBL] [Abstract][Full Text] [Related]
20. Therapeutic potential of saffron in brain disorders: From bench to bedside. Bej E; Volpe AR; Cesare P; Cimini A; d'Angelo M; Castelli V Phytother Res; 2024 May; 38(5):2482-2495. PubMed ID: 38446350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]