These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33807117)

  • 1. Automatic Measurement of Morphological Traits of Typical Leaf Samples.
    Huang X; Zheng S; Gui L
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33807117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Branch-Leaf Segmentation and Leaf Phenotypic Parameter Estimation of Pear Trees Based on Three-Dimensional Point Clouds.
    Li H; Wu G; Tao S; Yin H; Qi K; Zhang S; Guo W; Ninomiya S; Mu Y
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum.
    Thapa S; Zhu F; Walia H; Yu H; Ge Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation Method for Phenotypic Traits Based on the 3D Reconstruction of Maize Canopies.
    Ma X; Zhu K; Guan H; Feng J; Yu S; Liu G
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage.
    Xiong X; Yu L; Yang W; Liu M; Jiang N; Wu D; Chen G; Xiong L; Liu K; Liu Q
    Plant Methods; 2017; 13():7. PubMed ID: 28163771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LiDARPheno - A Low-Cost LiDAR-Based 3D Scanning System for Leaf Morphological Trait Extraction.
    Panjvani K; Dinh AV; Wahid KA
    Front Plant Sci; 2019; 10():147. PubMed ID: 30815008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of soybean plant trait parameters based on SfM-MVS algorithm combined with GRNN.
    He W; Ye Z; Li M; Yan Y; Lu W; Xing G
    Front Plant Sci; 2023; 14():1181322. PubMed ID: 37560031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget.
    Vadez V; Kholová J; Hummel G; Zhokhavets U; Gupta SK; Hash CT
    J Exp Bot; 2015 Sep; 66(18):5581-93. PubMed ID: 26034130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing.
    Li D; Cao Y; Tang XS; Yan S; Cai X
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30366434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Destructive Measurement of Three-Dimensional Plants Based on Point Cloud.
    Wang Y; Chen Y
    Plants (Basel); 2020 Apr; 9(5):. PubMed ID: 32365673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation.
    Xia C; Wang L; Chung BK; Lee JM
    Sensors (Basel); 2015 Aug; 15(8):20463-79. PubMed ID: 26295395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging Wheat Canopy Through Stereo Vision: Overcoming the Challenges of the Laboratory to Field Transition for Morphological Features Extraction.
    Dandrifosse S; Bouvry A; Leemans V; Dumont B; Mercatoris B
    Front Plant Sci; 2020; 11():96. PubMed ID: 32133023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A technique system for the measurement, reconstruction and character extraction of rice plant architecture.
    Li X; Wang X; Wei H; Zhu X; Peng Y; Li M; Li T; Huang H
    PLoS One; 2017; 12(5):e0177205. PubMed ID: 28558045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant trait measurement in 3D for growth monitoring.
    Paturkar A; Sen Gupta G; Bailey D
    Plant Methods; 2022 May; 18(1):59. PubMed ID: 35505428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.
    Müller-Linow M; Pinto-Espinosa F; Scharr H; Rascher U
    Plant Methods; 2015; 11():11. PubMed ID: 25774205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees.
    Wills J; Herbohn J; Hu J; Sohel S; Baynes J; Firn J
    Ecol Appl; 2018 Jun; 28(4):1116-1125. PubMed ID: 29698583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction.
    Wu S; Wen W; Wang Y; Fan J; Wang C; Gou W; Guo X
    Plant Phenomics; 2020; 2020():1848437. PubMed ID: 33313542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast phenotype approach of 3D point clouds of Pinus massoniana seedlings.
    Zhou H; Zhou Y; Long W; Wang B; Zhou Z; Chen Y
    Front Plant Sci; 2023; 14():1146490. PubMed ID: 37434607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.