These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33807194)

  • 1. Absence of 4-Formylaminooxyvinylglycine Production by
    Manning VA; Trippe KM
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33807194
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional analysis of a biosynthetic cluster essential for production of 4-formylaminooxyvinylglycine, a germination-arrest factor from Pseudomonas fluorescens WH6.
    Okrent RA; Trippe KM; Maselko M; Manning V
    Microbiology (Reading); 2017 Feb; 163(2):207-217. PubMed ID: 28270265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected distribution of the 4-formylaminooxyvinylglycine (FVG) biosynthetic pathway in Pseudomonas and beyond.
    Davis EW; Okrent RA; Manning VA; Trippe KM
    PLoS One; 2021; 16(4):e0247348. PubMed ID: 33891610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthetic Origin of Formylaminooxyvinylglycine and Characterization of the Formyltransferase GvgI.
    Lescallette AR; Dunn ZD; Manning VA; Trippe KM; Li B
    Biochemistry; 2022 Oct; 61(19):2159-2164. PubMed ID: 36126313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas fluorescens SBW25 produces furanomycin, a non-proteinogenic amino acid with selective antimicrobial properties.
    Trippe K; McPhail K; Armstrong D; Azevedo M; Banowetz G
    BMC Microbiol; 2013 May; 13():111. PubMed ID: 23688329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of 4-formylaminooxyvinylglycine in culture filtrates of Pseudomonas fluorescens WH6 and Pantoea ananatis BRT175 by laser ablation electrospray ionization-mass spectrometry.
    Okrent RA; Trippe KM; Manning VA; Walsh CM
    PLoS One; 2018; 13(7):e0200481. PubMed ID: 29990341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative regulation of germination-arrest factor production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor.
    Okrent RA; Halgren AB; Azevedo MD; Chang JH; Mills DI; Maselko M; Armstrong DJ; Banowetz GM; Trippe KM
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2432-2442. PubMed ID: 25165126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity.
    Samad A; Antonielli L; Sessitsch A; Compant S; Trognitz F
    Sci Rep; 2017 Dec; 7(1):17336. PubMed ID: 29229911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance to Two Vinylglycine Antibiotic Analogs Is Conferred by Inactivation of Two Separate Amino Acid Transporters in
    Smith DDN; Williams AN; Verrett JN; Bergbusch NT; Manning V; Trippe K; Stavrinides J
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30745372
    [No Abstract]   [Full Text] [Related]  

  • 10. Genetics of germination-arrest factor (GAF) production by Pseudomonas fluorescens WH6: identification of a gene cluster essential for GAF biosynthesis.
    Halgren A; Maselko M; Azevedo M; Mills D; Armstrong D; Banowetz G
    Microbiology (Reading); 2013 Jan; 159(Pt 1):36-45. PubMed ID: 23125119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of LuxI/LuxR and their regulation involved in biofilm formation and stress resistance in fish spoilers Pseudomonas fluorescens.
    Tang R; Zhu J; Feng L; Li J; Liu X
    Int J Food Microbiol; 2019 May; 297():60-71. PubMed ID: 30884254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Gac regulon of Pseudomonas fluorescens SBW25.
    Cheng X; de Bruijn I; van der Voort M; Loper JE; Raaijmakers JM
    Environ Microbiol Rep; 2013 Aug; 5(4):608-19. PubMed ID: 23864577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor.
    Lee X; Azevedo MD; Armstrong DJ; Banowetz GM; Reimmann C
    Environ Microbiol Rep; 2013 Feb; 5(1):83-9. PubMed ID: 23757135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR interference to interrogate genes that control biofilm formation in Pseudomonas fluorescens.
    Noirot-Gros MF; Forrester S; Malato G; Larsen PE; Noirot P
    Sci Rep; 2019 Nov; 9(1):15954. PubMed ID: 31685917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The In Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected
    Shehroz M; Aslam M; Ali Khan M; Aiman S; Gul Afridi S; Khan A
    Iran J Biotechnol; 2019 Dec; 17(4):e2250. PubMed ID: 32671125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5.
    Corbell N; Loper JE
    J Bacteriol; 1995 Nov; 177(21):6230-6. PubMed ID: 7592389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression profiling of ΔlitR and ΔrpoQ mutants reveals insight into QS regulation of motility, adhesion and biofilm formation in Aliivibrio salmonicida.
    Khider M; Hjerde E; Hansen H; Willassen NP
    BMC Genomics; 2019 Mar; 20(1):220. PubMed ID: 30876404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa.
    Li G; Lu CD
    Microbiology (Reading); 2018 Feb; 164(2):205-216. PubMed ID: 29293081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs.
    Terfehr D; Dahlmann TA; Kück U
    BMC Genomics; 2017 Mar; 18(1):272. PubMed ID: 28359302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.