These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33807360)

  • 1. Undoped Sr
    Skutina L; Filonova E; Medvedev D; Maignan A
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Mg-Doped SrMoO₃ Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells.
    Cascos V; Alonso JA; Fernández-Díaz MT
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A High-Performing Sulfur-Tolerant and Redox-Stable Layered Perovskite Anode for Direct Hydrocarbon Solid Oxide Fuel Cells.
    Ding H; Tao Z; Liu S; Zhang J
    Sci Rep; 2015 Dec; 5():18129. PubMed ID: 26648509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.
    Li M; Hua B; Luo JL; Jiang SP; Pu J; Chi B; Li J
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10293-301. PubMed ID: 27052726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and characterization of novel oxide anodes for solid oxide fuel cells.
    Tao S; Irvine JT
    Chem Rec; 2004; 4(2):83-95. PubMed ID: 15073876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the Stability of Ti-Doped Sr
    Zheng K; Albrycht M; Chen M; Qi K; Czaja P
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells.
    Lo Faro M; Campagna Zignani S; Aricò AS
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-Reversible Electrode Material for Direct Hydrocarbon Solid Oxide Fuel Cells.
    Qiu P; Yang X; Wang W; Wei T; Lu Y; Lin J; Yuan Z; Jia L; Li J; Chen F
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13988-13995. PubMed ID: 32149494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of a Water-Storable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance.
    Song Y; Wang W; Ge L; Xu X; Zhang Z; Julião PSB; Zhou W; Shao Z
    Adv Sci (Weinh); 2017 Nov; 4(11):1700337. PubMed ID: 29201629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells.
    Sengodan S; Choi S; Jun A; Shin TH; Ju YW; Jeong HY; Shin J; Irvine JT; Kim G
    Nat Mater; 2015 Feb; 14(2):205-9. PubMed ID: 25532072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells.
    Song Y; Wang W; Qu J; Zhong Y; Yang G; Zhou W; Shao Z
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41257-41267. PubMed ID: 30383360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells.
    Shin TH; Okamoto Y; Ida S; Ishihara T
    Chemistry; 2012 Sep; 18(37):11695-702. PubMed ID: 22865585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing and mapping electrode surfaces in solid oxide fuel cells.
    Blinn KS; Li X; Liu M; Bottomley LA; Liu M
    J Vis Exp; 2012 Sep; (67):e50161. PubMed ID: 23023264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nb
    Cascos V; Alonso JA; Fernández-Díaz MT
    Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells.
    Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z
    Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, Synthesis, Structure and Properties of Ba-Doped Derivatives of SrCo
    Sydyknazar S; Cascos V; Troncoso L; Larralde AL; Fernández-Díaz MT; Alonso JA
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31216661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layered Oxygen-Deficient Double Perovskites as Promising Cathode Materials for Solid Oxide Fuel Cells.
    Klyndyuk AI; Chizhova EA; Kharytonau DS; Medvedev DA
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Performing Chromate-Based Ceramic Anodes (Y
    Hussain AM; Pan KJ; Huang YL; Robinson IA; Gore C; Wachsman ED
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36075-36081. PubMed ID: 30257084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.