These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 33807398)

  • 1. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis.
    Costea M; Petrescu S; Feidt M; Dobre C; Borcila B
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-Objective Optimization for an Irreversible Porous Medium Cycle with Linear Variation in Working Fluid's Specific Heat.
    Zang P; Chen L; Ge Y; Shi S; Feng H
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012129. PubMed ID: 24580194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-Objective Optimization of an Irreversible Stirling Heat Engine with Linear Phenomenological Heat-Transfer Law.
    Xu H; Chen L; Ge Y; Feng H
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J; He J; Ma Y
    Phys Rev E; 2019 Nov; 100(5-1):052126. PubMed ID: 31870038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power and Thermal Efficiency Optimization of an Irreversible Steady-Flow Lenoir Cycle.
    Wang R; Ge Y; Chen L; Feng H; Wu Z
    Entropy (Basel); 2021 Apr; 23(4):. PubMed ID: 33918144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery.
    Liu P; Shu G; Tian H; Wang X
    Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of discrete heat engines and heat pumps in finite time.
    Feldmann T; Kosloff R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4774-90. PubMed ID: 11031518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines.
    Sheng S; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022136. PubMed ID: 25768487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic feature of a Brownian heat engine operating between two heat baths.
    Asfaw M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012143. PubMed ID: 24580208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-level laser heat engine at optimal performance with ecological function.
    Singh V; Johal RS
    Phys Rev E; 2019 Jul; 100(1-1):012138. PubMed ID: 31499856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle.
    Wang T; Ge Y; Chen L; Feng H; Yu J
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of an active heat engine.
    Gronchi G; Puglisi A
    Phys Rev E; 2021 May; 103(5-1):052134. PubMed ID: 34134299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-particle stochastic heat engine.
    Rana S; Pal PS; Saha A; Jayannavar AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid.
    Chen L; Ge Y; Liu C; Feng H; Lorenzini G
    Entropy (Basel); 2020 Mar; 22(4):. PubMed ID: 33286171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.