These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 33807473)
1. Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering. Romo-Valera C; Guerrero P; Arluzea J; Etxebarria J; de la Caba K; Andollo N Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807473 [TBL] [Abstract][Full Text] [Related]
2. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications. Olami H; Zilberman M J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932 [TBL] [Abstract][Full Text] [Related]
3. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid. Zhao X; Liu Y; Li W; Long K; Wang L; Liu S; Wang Y; Ren L Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():201-8. PubMed ID: 26117756 [TBL] [Abstract][Full Text] [Related]
4. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Duan X; Sheardown H Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624 [TBL] [Abstract][Full Text] [Related]
5. Epichlorohydrin-Cross-linked Hydroxyethyl Cellulose/Soy Protein Isolate Composite Films as Biocompatible and Biodegradable Implants for Tissue Engineering. Zhao Y; He M; Zhao L; Wang S; Li Y; Gan L; Li M; Xu L; Chang PR; Anderson DP; Chen Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2781-95. PubMed ID: 26741400 [TBL] [Abstract][Full Text] [Related]
6. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Goodarzi H; Jadidi K; Pourmotabed S; Sharifi E; Aghamollaei H Int J Biol Macromol; 2019 Apr; 126():620-632. PubMed ID: 30562517 [TBL] [Abstract][Full Text] [Related]
7. The effect of hyaluronic acid on biofunctionality of gelatin-collagen intestine tissue engineering scaffolds. Shabafrooz V; Mozafari M; Köhler GA; Assefa S; Vashaee D; Tayebi L J Biomed Mater Res A; 2014 Sep; 102(9):3130-9. PubMed ID: 24132994 [TBL] [Abstract][Full Text] [Related]
8. Bio-fabrication of stem-cell-incorporated corneal epithelial and stromal equivalents from silk fibroin and gelatin-based biomaterial for canine corneal regeneration. Torsahakul C; Israsena N; Khramchantuk S; Ratanavaraporn J; Dhitavat S; Rodprasert W; Nantavisai S; Sawangmake C PLoS One; 2022; 17(2):e0263141. PubMed ID: 35120168 [TBL] [Abstract][Full Text] [Related]
9. Crosslinked collagen-gelatin-hyaluronic acid biomimetic film for cornea tissue engineering applications. Liu Y; Ren L; Wang Y Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):196-201. PubMed ID: 25428062 [TBL] [Abstract][Full Text] [Related]
10. [Evaluation of biocompatibility of modified gelatin composite membranes for corneal regeneration]. Long Y; Ren L; Wang J; Chen M; Liu Y; Liu B; Wang Y; Ge J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):170-5. PubMed ID: 23488160 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
12. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Oryan A; Kamali A; Moshiri A; Baharvand H; Daemi H Int J Biol Macromol; 2018 Feb; 107(Pt A):678-688. PubMed ID: 28919526 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of plant-derived biomaterials for the development of tissue-engineered corneal substitutes. Badawy HAE; Osman A; Ahmed TAE; Hincke MT J Biomed Mater Res A; 2024 Dec; 112(12):2187-2201. PubMed ID: 38963322 [TBL] [Abstract][Full Text] [Related]
14. In vitro evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds. Satyam A; Subramanian GS; Raghunath M; Pandit A; Zeugolis DI J Tissue Eng Regen Med; 2014 Mar; 8(3):233-41. PubMed ID: 22552937 [TBL] [Abstract][Full Text] [Related]
15. Gelatin crosslinked with dehydroascorbic acid as a novel scaffold for tissue regeneration with simultaneous antitumor activity. Falconi M; Salvatore V; Teti G; Focaroli S; Durante S; Nicolini B; Mazzotti A; Orienti I Biomed Mater; 2013 Jun; 8(3):035011. PubMed ID: 23619339 [TBL] [Abstract][Full Text] [Related]
16. Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Grover CN; Cameron RE; Best SM J Mech Behav Biomed Mater; 2012 Jun; 10():62-74. PubMed ID: 22520419 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of chitosan-collagen crosslinked membranes for corneal tissue engineering. Li W; Long Y; Liu Y; Long K; Liu S; Wang Z; Wang Y; Ren L J Biomater Sci Polym Ed; 2014; 25(17):1962-72. PubMed ID: 25299624 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
19. Biomaterials for corneal bioengineering. Chen Z; You J; Liu X; Cooper S; Hodge C; Sutton G; Crook JM; Wallace GG Biomed Mater; 2018 Mar; 13(3):032002. PubMed ID: 29021411 [TBL] [Abstract][Full Text] [Related]
20. Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair. Jiang Q; Xu H; Cai S; Yang Y J Mater Sci Mater Med; 2014 Jul; 25(7):1789-800. PubMed ID: 24728742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]