These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 33807524)

  • 1. Gastrointestinal Vagal Afferents and Food Intake: Relevance of Circadian Rhythms.
    Page AJ
    Nutrients; 2021 Mar; 13(3):. PubMed ID: 33807524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Restricted Feeding Prevents Ablation of Diurnal Rhythms in Gastric Vagal Afferent Mechanosensitivity Observed in High-Fat Diet-Induced Obese Mice.
    Kentish SJ; Hatzinikolas G; Li H; Frisby CL; Wittert GA; Page AJ
    J Neurosci; 2018 May; 38(22):5088-5095. PubMed ID: 29760179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Fat Diet-Induced Obesity Ablates Gastric Vagal Afferent Circadian Rhythms.
    Kentish SJ; Vincent AD; Kennaway DJ; Wittert GA; Page AJ
    J Neurosci; 2016 Mar; 36(11):3199-207. PubMed ID: 26985030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of the light cycle ablates diurnal rhythms in gastric vagal afferent mechanosensitivity.
    Kentish SJ; Christie S; Vincent A; Li H; Wittert GA; Page AJ
    Neurogastroenterol Motil; 2019 Dec; 31(12):e13711. PubMed ID: 31509314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of gastrointestinal vagal afferents in the control of food intake: current prospects.
    Schwartz GJ
    Nutrition; 2000 Oct; 16(10):866-73. PubMed ID: 11054591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.
    Kentish SJ; Frisby CL; Kritas S; Li H; Hatzinikolas G; O'Donnell TA; Wittert GA; Page AJ
    PLoS One; 2015; 10(8):e0135892. PubMed ID: 26285043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of gastrointestinal vagal afferent fibres in obesity.
    Kentish SJ; Page AJ
    J Physiol; 2015 Feb; 593(4):775-86. PubMed ID: 25433079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in circadian and meal-induced gut peptide levels in lean and obese rats.
    Moghadam AA; Moran TH; Dailey MJ
    Exp Biol Med (Maywood); 2017 Dec; 242(18):1786-1794. PubMed ID: 29191090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gastric vagal afferent modulation by leptin is influenced by food intake status.
    Kentish SJ; O'Donnell TA; Isaacs NJ; Young RL; Li H; Harrington AM; Brierley SM; Wittert GA; Blackshaw LA; Page AJ
    J Physiol; 2013 Apr; 591(7):1921-34. PubMed ID: 23266933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pregnancy-related plasticity of gastric vagal afferent signals in mice.
    Li H; Clarke GS; Christie S; Ladyman SR; Kentish SJ; Young RL; Gatford KL; Page AJ
    Am J Physiol Gastrointest Liver Physiol; 2021 Jan; 320(2):G183-G192. PubMed ID: 33206550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Afferent signals regulating food intake.
    Bray GA
    Proc Nutr Soc; 2000 Aug; 59(3):373-84. PubMed ID: 10997653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulatory effect of methanandamide on gastric vagal afferent satiety signals depends on nutritional status.
    Christie S; O'Rielly R; Li H; Nunez-Salces M; Wittert GA; Page AJ
    J Physiol; 2020 Jun; 598(11):2169-2182. PubMed ID: 32237243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation.
    Fox EA; Biddinger JE; Baquet ZC; Jones KR; McAdams J
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1307-22. PubMed ID: 24068045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic high fat diet impairs glucagon like peptide-1 sensitivity in vagal afferents.
    Al Helaili A; Park SJ; Beyak MJ
    Biochem Biophys Res Commun; 2020 Nov; 533(1):110-117. PubMed ID: 32943186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity.
    Cork SC
    J Neuroendocrinol; 2018 Nov; 30(11):e12643. PubMed ID: 30203877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral neural targets in obesity.
    Page AJ; Symonds E; Peiris M; Blackshaw LA; Young RL
    Br J Pharmacol; 2012 Jul; 166(5):1537-58. PubMed ID: 22432806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.
    Biddinger JE; Fox EA
    Physiol Behav; 2010 Aug; 101(1):184-91. PubMed ID: 20403369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice.
    Yu Y; Park SJ; Beyak MJ
    J Physiol; 2019 Mar; 597(6):1487-1502. PubMed ID: 30565225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats.
    Bugajski AJ; Gil K; Ziomber A; Zurowski D; Zaraska W; Thor PJ
    J Physiol Pharmacol; 2007 Mar; 58 Suppl 1():5-12. PubMed ID: 17443024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.