These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. Flechas SV; Acosta-González A; Escobar LA; Kueneman JG; Sánchez-Quitian ZA; Parra-Giraldo CM; Rollins-Smith LA; Reinert LK; Vredenburg VT; Amézquita A; Woodhams DC ISME J; 2019 Feb; 13(2):361-373. PubMed ID: 30254321 [TBL] [Abstract][Full Text] [Related]
43. Inter- and intra-specific variation on sensitivity of larval amphibians to nitrite. Shinn C; Marco A; Serrano L Chemosphere; 2008 Mar; 71(3):507-14. PubMed ID: 18023843 [TBL] [Abstract][Full Text] [Related]
44. Macroalgae as spatial and temporal bioindicators of coastal metal pollution following remediation and diversion of acid mine drainage. Chalkley R; Child F; Al-Thaqafi K; Dean AP; White KN; Pittman JK Ecotoxicol Environ Saf; 2019 Oct; 182():109458. PubMed ID: 31398784 [TBL] [Abstract][Full Text] [Related]
45. Do host-associated gut microbiota mediate the effect of an herbicide on disease risk in frogs? Knutie SA; Gabor CR; Kohl KD; Rohr JR J Anim Ecol; 2018 Mar; 87(2):489-499. PubMed ID: 29030867 [TBL] [Abstract][Full Text] [Related]
46. Frog Skin Microbiota Vary With Host Species and Environment but Not Chytrid Infection. Kruger A Front Microbiol; 2020; 11():1330. PubMed ID: 32670233 [TBL] [Abstract][Full Text] [Related]
47. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. Di Cesare A; Pjevac P; Eckert E; Curkov N; Miko Šparica M; Corno G; Orlić S Environ Pollut; 2020 Oct; 265(Pt B):114823. PubMed ID: 32512474 [TBL] [Abstract][Full Text] [Related]
48. Behavioral responses of the Iberian waterfrog, Pelophylax perezi (Seoane, 1885), to three nitrogenous compounds in laboratory conditions. Egea-Serrano A; Tejedo M; Torralva M Ecotoxicology; 2011 Aug; 20(6):1246-57. PubMed ID: 21512748 [TBL] [Abstract][Full Text] [Related]
49. Hybrid advantage in skin peptide immune defenses of water frogs (Pelophylax esculentus) at risk from emerging pathogens. Daum JM; Davis LR; Bigler L; Woodhams DC Infect Genet Evol; 2012 Dec; 12(8):1854-64. PubMed ID: 22940461 [TBL] [Abstract][Full Text] [Related]
50. Short-term continuous and pulse Pb exposure causes negative effects on skin histomorphological structure and bacterial composition of adult Pelophylax nigromaculatus. Liu Y; Huang M; Wang Y; Duan R; Guo J; Cao X; Xu X Environ Sci Pollut Res Int; 2022 Aug; 29(37):56592-56605. PubMed ID: 35338466 [TBL] [Abstract][Full Text] [Related]
51. Histopathological analysis of carbaryl-induced toxicity in the spleen of Levantine frog, Pelophylax bedriagae (Anura: Ranidae). Çakıcı Ö Environ Sci Pollut Res Int; 2018 Sep; 25(25):24917-24922. PubMed ID: 29931639 [TBL] [Abstract][Full Text] [Related]
52. Amphibian tolerance to arsenic: microbiome-mediated insights. Cordeiro IF; Lemes CGC; Sanchez AB; da Silva AK; de Paula CH; de Matos RC; Ribeiro DF; de Matos JP; Garcia CCM; Beirão M; Becker CG; Pires MRS; Moreira LM Sci Rep; 2024 May; 14(1):10193. PubMed ID: 38702361 [TBL] [Abstract][Full Text] [Related]
53. Neuroprotective effects on microglia and insights into the structure-activity relationship of an antioxidant peptide isolated from Pelophylax perezi. Plácido A; do Pais do Amaral C; Teixeira C; Nogueira A; Brango-Vanegas J; Alves Barbosa E; C Moreira D; Silva-Carvalho AÉ; da Silva MDG; do Nascimento Dias J; Albuquerque P; Saldanha-Araújo F; C D A Lima F; Batagin-Neto A; Kuckelhaus S; Bessa LJ; Freitas J; Dotto Brand G; C Santos N; B Relvas J; Gomes P; S A Leite JR; Eaton P J Cell Mol Med; 2022 May; 26(10):2793-2807. PubMed ID: 35460166 [TBL] [Abstract][Full Text] [Related]
54. Functional Redundancy of Batrachochytrium dendrobatidis Inhibition in Bacterial Communities Isolated from Lithobates clamitans Skin. Kruger A Microb Ecol; 2020 Jan; 79(1):231-240. PubMed ID: 31165187 [TBL] [Abstract][Full Text] [Related]
55. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response. Jayawardena UA; Ratnasooriya WD; Wickramasinghe DD; Udagama PV Sci Total Environ; 2016 Oct; 566-567():1194-1204. PubMed ID: 27335164 [TBL] [Abstract][Full Text] [Related]
56. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution. Li Q; You P; Hu Q; Leng B; Wang J; Chen J; Wan S; Wang B; Yuan C; Zhou R; Ouyang K Ecotoxicol Environ Saf; 2020 Nov; 204():111083. PubMed ID: 32791359 [TBL] [Abstract][Full Text] [Related]
57. Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens. Woodhams DC; LaBumbard BC; Barnhart KL; Becker MH; Bletz MC; Escobar LA; Flechas SV; Forman ME; Iannetta AA; Joyce MD; Rabemananjara F; Gratwicke B; Vences M; Minbiole KPC Microb Ecol; 2018 May; 75(4):1049-1062. PubMed ID: 29119317 [TBL] [Abstract][Full Text] [Related]
58. Antimicrobial properties of two purified skin peptides from the mink frog (Rana septentrionalis) against bacteria isolated from the natural habitat. Ashcroft JW; Zalinger ZB; Bevier CR; Fekete FA Comp Biochem Physiol C Toxicol Pharmacol; 2007 Sep; 146(3):325-30. PubMed ID: 17499556 [TBL] [Abstract][Full Text] [Related]
59. Differentiation of frogs from two populations belonging to the Pelophylax esculentus complex by LC-MS/MS comparison of their skin peptidomes. Samgina TY; Artemenko KA; Bergquist J; Trebse P; Torkar G; Tolpina MD; Lebedev AT Anal Bioanal Chem; 2017 Mar; 409(7):1951-1961. PubMed ID: 28012108 [TBL] [Abstract][Full Text] [Related]
60. Host and Aquatic Environment Shape the Amphibian Skin Microbiome but Effects on Downstream Resistance to the Pathogen Jani AJ; Briggs CJ Front Microbiol; 2018; 9():487. PubMed ID: 29619014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]