BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 33807610)

  • 1. Allele-Specific Knockout by CRISPR/Cas to Treat Autosomal Dominant Retinitis Pigmentosa Caused by the G56R Mutation in NR2E3.
    Diakatou M; Dubois G; Erkilic N; Sanjurjo-Soriano C; Meunier I; Kalatzis V
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antisense Oligonucleotide-Based Downregulation of the G56R Pathogenic Variant Causing
    Naessens S; Ruysschaert L; Lefever S; Coppieters F; De Baere E
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31083481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in NR2E3 can cause dominant or recessive retinal degenerations in the same family.
    Escher P; Gouras P; Roduit R; Tiab L; Bolay S; Delarive T; Chen S; Tsai CC; Hayashi M; Zernant J; Merriam JE; Mermod N; Allikmets R; Munier FL; Schorderet DF
    Hum Mutat; 2009 Mar; 30(3):342-51. PubMed ID: 19006237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX.
    Roduit R; Escher P; Schorderet DF
    PLoS One; 2009 Oct; 4(10):e7379. PubMed ID: 19823680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa.
    Coppieters F; Leroy BP; Beysen D; Hellemans J; De Bosscher K; Haegeman G; Robberecht K; Wuyts W; Coucke PJ; De Baere E
    Am J Hum Genet; 2007 Jul; 81(1):147-57. PubMed ID: 17564971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP).
    Schorderet DF; Escher P
    Hum Mutat; 2009 Nov; 30(11):1475-85. PubMed ID: 19718767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9.
    Bohrer LR; Wiley LA; Burnight ER; Cooke JA; Giacalone JC; Anfinson KR; Andorf JL; Mullins RF; Stone EM; Tucker BA
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30959774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of NR2E3 but not NRL mutations with retinitis pigmentosa in the Chinese population.
    Yang Y; Zhang X; Chen LJ; Chiang SW; Tam PO; Lai TY; Chan CK; Wang N; Lam DS; Pang CP
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):2229-35. PubMed ID: 19933183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double concentric autofluorescence ring in NR2E3-p.G56R-linked autosomal dominant retinitis pigmentosa.
    Escher P; Tran HV; Vaclavik V; Borruat FX; Schorderet DF; Munier FL
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4754-64. PubMed ID: 22661467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of an induced pluripotent stem cell (iPSC) line from a patient with autosomal dominant retinitis pigmentosa due to a mutation in the NR2E3 gene.
    Terray A; Slembrouck A; Nanteau C; Chondroyer C; Zeitz C; Sahel JA; Audo I; Reichman S; Goureau O
    Stem Cell Res; 2017 Oct; 24():1-4. PubMed ID: 29034877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa.
    Diakatou M; Manes G; Bocquet B; Meunier I; Kalatzis V
    Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31126147
    [No Abstract]   [Full Text] [Related]  

  • 12. Presence of a Triple Concentric Autofluorescence Ring in NR2E3-p.G56R-Linked Autosomal Dominant Retinitis Pigmentosa (ADRP).
    Escher P; Vaclavik V; Munier FL; Tran HV
    Invest Ophthalmol Vis Sci; 2016 Apr; 57(4):2001-2. PubMed ID: 27096758
    [No Abstract]   [Full Text] [Related]  

  • 13. Nr2e3 functional domain ablation by CRISPR-Cas9D10A identifies a new isoform and generates retinitis pigmentosa and enhanced S-cone syndrome models.
    Aísa-Marín I; López-Iniesta MJ; Milla S; Lillo J; Navarro G; de la Villa P; Marfany G
    Neurobiol Dis; 2020 Dec; 146():105122. PubMed ID: 33007388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant Retinitis Pigmentosa, p.Gly56Arg Mutation in NR2E3: Phenotype in a Large Cohort of 24 Cases.
    Blanco-Kelly F; García Hoyos M; Lopez Martinez MA; Lopez-Molina MI; Riveiro-Alvarez R; Fernandez-San Jose P; Avila-Fernandez A; Corton M; Millan JM; García Sandoval B; Ayuso C
    PLoS One; 2016; 11(2):e0149473. PubMed ID: 26910043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allele-specific gene-editing approach for vision loss restoration in
    Liu X; Qiao J; Jia R; Zhang F; Meng X; Li Y; Yang L
    Elife; 2023 Jun; 12():. PubMed ID: 37272616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of Small Molecule-Mediated Reprogramming of Rod Photoreceptors to Treat Retinitis Pigmentosa.
    Nakamura PA; Tang S; Shimchuk AA; Ding S; Reh TA
    Invest Ophthalmol Vis Sci; 2016 Nov; 57(14):6407-6415. PubMed ID: 27893103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.
    Bakondi B; Lv W; Lu B; Jones MK; Tsai Y; Kim KJ; Levy R; Akhtar AA; Breunig JJ; Svendsen CN; Wang S
    Mol Ther; 2016 Mar; 24(3):556-63. PubMed ID: 26666451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Personalized therapeutic strategies for patients with retinitis pigmentosa.
    Zheng A; Li Y; Tsang SH
    Expert Opin Biol Ther; 2015 Mar; 15(3):391-402. PubMed ID: 25613576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.
    Moreno AM; Fu X; Zhu J; Katrekar D; Shih YV; Marlett J; Cabotaje J; Tat J; Naughton J; Lisowski L; Varghese S; Zhang K; Mali P
    Mol Ther; 2018 Jul; 26(7):1818-1827. PubMed ID: 29754775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model.
    Patrizi C; Llado M; Benati D; Iodice C; Marrocco E; Guarascio R; Surace EM; Cheetham ME; Auricchio A; Recchia A
    Am J Hum Genet; 2021 Feb; 108(2):295-308. PubMed ID: 33508235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.