BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 33807610)

  • 21. In Vivo CRISPR/Cas9-Mediated Genome Editing Mitigates Photoreceptor Degeneration in a Mouse Model of X-Linked Retinitis Pigmentosa.
    Hu S; Du J; Chen N; Jia R; Zhang J; Liu X; Yang L
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):31. PubMed ID: 32330228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells.
    Bassuk AG; Zheng A; Li Y; Tsang SH; Mahajan VB
    Sci Rep; 2016 Jan; 6():19969. PubMed ID: 26814166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Germline knockout of
    Kolesnikov AV; Murphy DP; Corbo JC; Kefalov VJ
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2316118121. PubMed ID: 38442152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Gly56Arg mutation in NR2E3 accounts for 1-2% of autosomal dominant retinitis pigmentosa.
    Gire AI; Sullivan LS; Bowne SJ; Birch DG; Hughbanks-Wheaton D; Heckenlively JR; Daiger SP
    Mol Vis; 2007 Oct; 13():1970-5. PubMed ID: 17982421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene editing prospects for treating inherited retinal diseases.
    Benati D; Patrizi C; Recchia A
    J Med Genet; 2020 Jul; 57(7):437-444. PubMed ID: 31857428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling autosomal dominant retinitis pigmentosa by using patient-specific retinal organoids with a class-3 RHO mutation.
    Lin X; Liu ZL; Zhang X; Wang W; Huang ZQ; Sun SN; Jin ZB
    Exp Eye Res; 2024 Apr; 241():109856. PubMed ID: 38479725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene Correction Recovers Phagocytosis in Retinal Pigment Epithelium Derived from Retinitis Pigmentosa-Human-Induced Pluripotent Stem Cells.
    Artero-Castro A; Long K; Bassett A; Ávila-Fernandez A; Cortón M; Vidal-Puig A; Jendelova P; Rodriguez-Jimenez FJ; Clemente E; Ayuso C; Erceg S
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Knockout of Nr2e3 prevents rod photoreceptor differentiation and leads to selective L-/M-cone photoreceptor degeneration in zebrafish.
    Xie S; Han S; Qu Z; Liu F; Li J; Yu S; Reilly J; Tu J; Liu X; Lu Z; Hu X; Yimer TA; Qin Y; Huang Y; Lv Y; Jiang T; Shu X; Tang Z; Jia H; Wong F; Liu M
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1273-1283. PubMed ID: 30684641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/SaCas9-based gene editing rescues photoreceptor degeneration throughout a rhodopsin-associated autosomal dominant retinitis pigmentosa mouse model.
    Du W; Li J; Tang X; Yu W; Zhao M
    Exp Biol Med (Maywood); 2023 Oct; 248(20):1818-1828. PubMed ID: 37837380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa.
    Li L; Nakaya N; Chavali VR; Ma Z; Jiao X; Sieving PA; Riazuddin S; Tomarev SI; Ayyagari R; Riazuddin SA; Hejtmancik JF
    Am J Hum Genet; 2010 Sep; 87(3):400-9. PubMed ID: 20797688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards personalised allele-specific CRISPR gene editing to treat autosomal dominant disorders.
    Christie KA; Courtney DG; DeDionisio LA; Shern CC; De Majumdar S; Mairs LC; Nesbit MA; Moore CBT
    Sci Rep; 2017 Nov; 7(1):16174. PubMed ID: 29170458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration.
    Milam AH; Rose L; Cideciyan AV; Barakat MR; Tang WX; Gupta N; Aleman TS; Wright AF; Stone EM; Sheffield VC; Jacobson SG
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):473-8. PubMed ID: 11773633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations P51U and G122E in retinal transcription factor NRL associated with autosomal dominant and sporadic retinitis pigmentosa.
    Martinez-Gimeno M; Maseras M; Baiget M; Beneito M; Antiñolo G; Ayuso C; Carballo M
    Hum Mutat; 2001 Jun; 17(6):520. PubMed ID: 11385710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of pupil responses to blue and red light stimuli in autosomal dominant retinitis pigmentosa due to NR2E3 mutation.
    Kawasaki A; Crippa SV; Kardon R; Leon L; Hamel C
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5562-9. PubMed ID: 22807301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disease modeling and pharmacological rescue of autosomal dominant retinitis pigmentosa associated with
    Kandoi S; Martinez C; Chen KX; Mehine M; Reddy LVK; Mansfield BC; Duncan JL; Lamba DA
    Elife; 2024 Apr; 12():. PubMed ID: 38661530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Data on the generation of two
    Aísa-Marín I; López-Iniesta MJ; Marfany G
    Data Brief; 2020 Dec; 33():106447. PubMed ID: 33163596
    [No Abstract]   [Full Text] [Related]  

  • 37. Targeting of the NRL Pathway as a Therapeutic Strategy to Treat Retinitis Pigmentosa.
    Moore SM; Skowronska-Krawczyk D; Chao DL
    J Clin Med; 2020 Jul; 9(7):. PubMed ID: 32668775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa.
    Meng D; Ragi SD; Tsang SH
    Mol Ther; 2020 Oct; 28(10):2139-2149. PubMed ID: 32882181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery.
    Giannelli SG; Luoni M; Castoldi V; Massimino L; Cabassi T; Angeloni D; Demontis GC; Leocani L; Andreazzoli M; Broccoli V
    Hum Mol Genet; 2018 Mar; 27(5):761-779. PubMed ID: 29281027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa.
    Daiger SP; Bowne SJ; Sullivan LS
    Cold Spring Harb Perspect Med; 2014 Oct; 5(10):. PubMed ID: 25304133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.