These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33807746)

  • 1. Reference Frame Unification of IMU-Based Joint Angle Estimation: The Experimental Investigation and a Novel Method.
    Yi C; Jiang F; Yang C; Chen Z; Ding Z; Liu J
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33807746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting kinematic constraints to compensate magnetic disturbances when calculating joint angles of approximate hinge joints from orientation estimates of inertial sensors.
    Laidig D; Schauer T; Seel T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():971-976. PubMed ID: 28813947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base.
    Xing H; Chen Z; Yang H; Wang C; Lin Z; Guo M
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29649150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Condition-Independent 3D Joint Angle Estimation Using Inertial Sensors and Kinematic Constraints.
    Lee JK; Jeon TH
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.
    Allen M; Zhong Q; Kirsch N; Dani A; Clark WW; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2365-2374. PubMed ID: 28885155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of local magnetic field disturbances on inertial measurement units accuracy.
    Robert-Lachaine X; Mecheri H; Larue C; Plamondon A
    Appl Ergon; 2017 Sep; 63():123-132. PubMed ID: 28502401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An IMU-to-Body Alignment Method Applied to Human Gait Analysis.
    Vargas-Valencia LS; Elias A; Rocon E; Bastos-Filho T; Frizera A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetometer-free Realtime Inertial Motion Tracking by Exploitation of Kinematic Constraints in 2-DoF Joints.
    Laidig D; Lehmann D; Begin MA; Seel T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1233-1238. PubMed ID: 31946115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body-Worn IMU Human Skeletal Pose Estimation Using a Factor Graph-Based Optimization Framework.
    McGrath T; Stirling L
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33276492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Constraints Based Dynamic Calibration of IMU Position on Lower Limbs in IMU-MoCap.
    Hu Q; Liu L; Mei F; Yang C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An effortless procedure to align the local frame of an inertial measurement unit to the local frame of another motion capture system.
    Chardonnens J; Favre J; Aminian K
    J Biomech; 2012 Aug; 45(13):2297-300. PubMed ID: 22784650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.
    Lebel K; Hamel M; Duval C; Nguyen H; Boissy P
    Gait Posture; 2018 Jan; 59():199-205. PubMed ID: 29065321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A frame orientation optimisation method for consistent interpretation of kinematic signals.
    Ortigas Vásquez A; Taylor WR; Maas A; Woiczinski M; Grupp TM; Sauer A
    Sci Rep; 2023 Jun; 13(1):9632. PubMed ID: 37316703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration.
    van der Slikke RM; Berger MA; Bregman DJ; Lagerberg AH; Veeger HE
    J Biomech; 2015 Sep; 48(12):3398-405. PubMed ID: 26141162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of Measurement for Trailing Limb Angle and Propulsion Force during Gait Using a Magnetic Inertial Measurement Unit.
    Miyazaki T; Kawada M; Nakai Y; Kiyama R; Yone K
    Biomed Res Int; 2019; 2019():8123467. PubMed ID: 31930138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor-to-body calibration procedure for clinical motion analysis of lower limb using magnetic and inertial measurement units.
    Nazarahari M; Noamani A; Ahmadian N; Rouhani H
    J Biomech; 2019 Mar; 85():224-229. PubMed ID: 30732911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of inertial sensor-based 3D joint angle measurement accuracy using an instrumented gimbal.
    Brennan A; Zhang J; Deluzio K; Li Q
    Gait Posture; 2011 Jul; 34(3):320-3. PubMed ID: 21715167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.