BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 33807807)

  • 1. From Mitochondria to Atherosclerosis: The Inflammation Path.
    Suárez-Rivero JM; Pastor-Maldonado CJ; Povea-Cabello S; Álvarez-Córdoba M; Villalón-García I; Talaverón-Rey M; Suárez-Carrillo A; Munuera-Cabeza M; Sánchez-Alcázar JA
    Biomedicines; 2021 Mar; 9(3):. PubMed ID: 33807807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Dysfunction in Vascular Wall Cells and Its Role in Atherosclerosis.
    Salnikova D; Orekhova V; Grechko A; Starodubova A; Bezsonov E; Popkova T; Orekhov A
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis.
    Orekhov AN; Gerasimova EV; Sukhorukov VN; Poznyak AV; Nikiforov NG
    Curr Pharm Des; 2021; 27(2):276-292. PubMed ID: 33045961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Dysfunction: The Hidden Player in the Pathogenesis of Atherosclerosis?
    Ciccarelli G; Conte S; Cimmino G; Maiorano P; Morrione A; Giordano A
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melatonin Ameliorates the Progression of Atherosclerosis via Mitophagy Activation and NLRP3 Inflammasome Inhibition.
    Ma S; Chen J; Feng J; Zhang R; Fan M; Han D; Li X; Li C; Ren J; Wang Y; Cao F
    Oxid Med Cell Longev; 2018; 2018():9286458. PubMed ID: 30254716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria?
    Lawlor KE; Vince JE
    Biochim Biophys Acta; 2014 Apr; 1840(4):1433-40. PubMed ID: 23994495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NLPR3 Inflammasomes and Their Significance for Atherosclerosis.
    Poznyak AV; Melnichenko AA; Wetzker R; Gerasimova EV; Orekhov AN
    Biomedicines; 2020 Jul; 8(7):. PubMed ID: 32664349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of mitochondrial DNA damage in the development of atherosclerosis.
    Yu EP; Bennett MR
    Free Radic Biol Med; 2016 Nov; 100():223-230. PubMed ID: 27320189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of Arterial-Wall-Specific Mechanisms in Atherosclerosis: Focus on Mitochondrial Mutations.
    Orekhov AN; Ivanova EA; Markin AM; Nikiforov NG; Sobenin IA
    Curr Atheroscler Rep; 2020 Aug; 22(10):54. PubMed ID: 32772280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation.
    Meyer A; Laverny G; Bernardi L; Charles AL; Alsaleh G; Pottecher J; Sibilia J; Geny B
    Front Immunol; 2018; 9():536. PubMed ID: 29725325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fetal programming of atherosclerosis: possible role of the mitochondria.
    Leduc L; Levy E; Bouity-Voubou M; Delvin E
    Eur J Obstet Gynecol Reprod Biol; 2010 Apr; 149(2):127-30. PubMed ID: 20053495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Baicalin ameliorates atherosclerosis by inhibiting NLRP3 inflammasome in apolipoprotein E-deficient mice.
    Zhao J; Wang Z; Yuan Z; Lv S; Su Q
    Diab Vasc Dis Res; 2020; 17(6):1479164120977441. PubMed ID: 33269624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response.
    Mohanty A; Tiwari-Pandey R; Pandey NR
    J Cell Commun Signal; 2019 Sep; 13(3):303-318. PubMed ID: 30719617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Dysfunction in Atherosclerosis.
    Peng W; Cai G; Xia Y; Chen J; Wu P; Wang Z; Li G; Wei D
    DNA Cell Biol; 2019 Jul; 38(7):597-606. PubMed ID: 31095428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thrombosis formation on atherosclerotic lesions and plaque rupture.
    Badimon L; Vilahur G
    J Intern Med; 2014 Dec; 276(6):618-32. PubMed ID: 25156650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria as a centrally positioned hub in the innate immune response.
    Sandhir R; Halder A; Sunkaria A
    Biochim Biophys Acta Mol Basis Dis; 2017 May; 1863(5):1090-1097. PubMed ID: 27794419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway.
    Chen ML; Zhu XH; Ran L; Lang HD; Yi L; Mi MT
    J Am Heart Assoc; 2017 Sep; 6(9):. PubMed ID: 28871042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Insights and Current Evidence for Mechanisms of Atherosclerosis: Mitochondrial Dynamics as a Potential Therapeutic Target.
    Li D; Yang S; Xing Y; Pan L; Zhao R; Zhao Y; Liu L; Wu M
    Front Cell Dev Biol; 2021; 9():673839. PubMed ID: 34307357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial dysfunction in atherosclerosis.
    Madamanchi NR; Runge MS
    Circ Res; 2007 Mar; 100(4):460-73. PubMed ID: 17332437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Epigenetics Regulating Inflammation in Cancer and Aging.
    Chatterjee D; Das P; Chakrabarti O
    Front Cell Dev Biol; 2022; 10():929708. PubMed ID: 35903542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.