BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33807852)

  • 1. Structural Analysis of the cl-Par-4 Tumor Suppressor as a Function of Ionic Environment.
    Raut KK; Ponniah K; Pascal SM
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33807852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetramer formation by the caspase-activated fragment of the Par-4 tumor suppressor.
    Clark AM; Ponniah K; Warden MS; Raitt EM; Smith BG; Pascal SM
    FEBS J; 2019 Oct; 286(20):4060-4073. PubMed ID: 31177609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-Induced Folding of the Caspase-Cleaved Par-4 Tumor Suppressor: Evidence of Structure Outside of the Coiled Coil Domain.
    Clark AM; Ponniah K; Warden MS; Raitt EM; Yawn AC; Pascal SM
    Biomolecules; 2018 Dec; 8(4):. PubMed ID: 30518159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the Conformational Stability of the cl-Par-4 Tumor Suppressor via Site-Directed Mutagenesis.
    Pandey S; Raut KK; Clark AM; Baudin A; Djemri L; Libich DS; Ponniah K; Pascal SM
    Biomolecules; 2023 Apr; 13(4):. PubMed ID: 37189414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of direct interaction between cisplatin and the caspase-cleaved prostate apoptosis response-4 tumor suppressor.
    Raut KK; Pandey S; Kharel G; Pascal SM
    Protein Sci; 2024 Mar; 33(3):e4867. PubMed ID: 38093605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-state conformational equilibrium in the Par-4 leucine zipper domain.
    Schwalbe M; Dutta K; Libich DS; Venugopal H; Claridge JK; Gell DA; Mackay JP; Edwards PJ; Pascal SM
    Proteins; 2010 Aug; 78(11):2433-49. PubMed ID: 20602362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prostate apoptosis response 4 (Par-4), a novel substrate of caspase-3 during apoptosis activation.
    Chaudhry P; Singh M; Parent S; Asselin E
    Mol Cell Biol; 2012 Feb; 32(4):826-39. PubMed ID: 22184067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder.
    Forsova OS; Zakharov VV
    FEBS J; 2016 Apr; 283(8):1550-69. PubMed ID: 26918762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding and binding pathways of BH3-only proteins are encoded within their intrinsically disordered sequence, not templated by partner proteins.
    Crabtree MD; Mendonça CATF; Bubb QR; Clarke J
    J Biol Chem; 2018 Jun; 293(25):9718-9723. PubMed ID: 29716994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple structural states exist throughout the helical nucleation sequence of the intrinsically disordered protein stathmin, as reported by electron paramagnetic resonance spectroscopy.
    Chui AJ; López CJ; Brooks EK; Chua KC; Doupey TG; Foltz GN; Kamel JG; Larrosa E; Sadiki A; Bridges MD
    Biochemistry; 2015 Mar; 54(9):1717-28. PubMed ID: 25715079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Aggregation Features of a Human κ-Casein Fragment with Antitumor and Cell-Penetrating Properties.
    Chinak OA; Shernyukov AV; Ovcherenko SS; Sviridov EA; Golyshev VM; Fomin AS; Pyshnaya IA; Kuligina EV; Richter VA; Bagryanskaya EG
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31408975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Par-4 sensitizes TRAIL-induced apoptosis via inactivation of NF-kappaB and Akt signaling pathways in renal cancer cells.
    Lee TJ; Jang JH; Noh HJ; Park EJ; Choi KS; Kwon TK
    J Cell Biochem; 2010 Apr; 109(5):885-95. PubMed ID: 20127709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, expression, purification, crystallization and preliminary crystallographic analysis of the C-terminal domain of Par-4 (PAWR).
    Tiruttani Subhramanyam UK; Kubicek J; Eidhoff UB; Labahn J
    Acta Crystallogr F Struct Biol Commun; 2014 Sep; 70(Pt 9):1224-7. PubMed ID: 25195896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells.
    Thayyullathil F; Pallichankandy S; Rahman A; Kizhakkayil J; Chathoth S; Patel M; Galadari S
    J Mol Signal; 2013 Feb; 8(1):2. PubMed ID: 23442976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic disorder and coiled-coil formation in prostate apoptosis response factor 4.
    Libich DS; Schwalbe M; Kate S; Venugopal H; Claridge JK; Edwards PJ; Dutta K; Pascal SM
    FEBS J; 2009 Jul; 276(14):3710-28. PubMed ID: 19490121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer-selective apoptotic effects of extracellular and intracellular Par-4.
    Shrestha-Bhattarai T; Rangnekar VM
    Oncogene; 2010 Jul; 29(27):3873-80. PubMed ID: 20440265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-induced folding of an apoptotic coiled coil.
    Dutta K; Alexandrov A; Huang H; Pascal SM
    Protein Sci; 2001 Dec; 10(12):2531-40. PubMed ID: 11714921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical Characterisation of KEIF-The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A.
    Jephthah S; Månsson LK; Belić D; Morth JP; Skepö M
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32316569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Prostate Apoptosis Response-4 (Par-4) in Mycobacterium tuberculosis Infected Macrophages.
    Han JY; Lim YJ; Choi JA; Lee JH; Jo SH; Oh SM; Song CH
    Sci Rep; 2016 Aug; 6():32079. PubMed ID: 27552917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic Par-4 inhibits non-autochthonous tumor growth.
    Zhao Y; Burikhanov R; Brandon J; Qiu S; Shelton BJ; Spear B; Bondada S; Bryson S; Rangnekar VM
    Cancer Biol Ther; 2011 Jul; 12(2):152-7. PubMed ID: 21613819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.