These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33808000)

  • 1. Optimizing 3D Printed Metallic Object's Postprocessing: A Case of Gamma-TiAl Alloys.
    Chowdhury MAK; Ullah AS; Teti R
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33808000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine.
    Dzogbewu TC; du Preez WB
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-Dependent Structural Properties of a High-Nb TiAl Alloy Powder.
    Liu B; Wang M; Du Y; Li J
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.
    Basile G; Baudana G; Marchese G; Lorusso M; Lombardi M; Ugues D; Fino P; Biamino S
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting.
    Wang P; Sin WJ; Nai MLS; Wei J
    Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy consumption assessment in manufacturing Ti6Al4V electron beam melted parts post-processed by machining.
    Cozzolino E; Franchitti S; Borrelli R; Pirozzi C; Astarita A
    Int J Adv Manuf Technol; 2023; 125(3-4):1289-1303. PubMed ID: 36644782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drilling Process in γ-TiAl Intermetallic Alloys.
    Beranoagirre A; Urbikain G; Calleja A; López de Lacalle LN
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machining of bone: Analysis of cutting force and surface roughness by turning process.
    Noordin MY; Jiawkok N; Ndaruhadi PY; Kurniawan D
    Proc Inst Mech Eng H; 2015 Nov; 229(11):761-8. PubMed ID: 26399875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Areal Surface Roughness of AZ31B Magnesium Alloy Processed by Dry Face Turning: An Experimental Framework Combined with Regression Analysis.
    Gao H; Ma B; Singh RP; Yang H
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Response Optimization in High-Speed Machining of Ti-6Al-4V Using TOPSIS-Fuzzy Integrated Approach.
    Abbas AT; Sharma N; Anwar S; Luqman M; Tomaz I; Hegab H
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32121644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ANN Surface Roughness Optimization of AZ61 Magnesium Alloy Finish Turning: Minimum Machining Times at Prime Machining Costs.
    Abbas AT; Pimenov DY; Erdakov IN; Taha MA; Soliman MS; El Rayes MM
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29772670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drilling High Precision Holes in Ti6Al4V Using Rotary Ultrasonic Machining and Uncertainties Underlying Cutting Force, Tool Wear, and Production Inaccuracies.
    Chowdhury MAK; Sharif Ullah AMM; Anwar S
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28895876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface Roughness Characterisation and Analysis of the Electron Beam Melting (EBM) Process.
    Galati M; Minetola P; Rizza G
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31323959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.
    Wang H; Zhao B; Liu C; Wang C; Tan X; Hu M
    PLoS One; 2016; 11(7):e0158513. PubMed ID: 27391895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies-Electron Beam Melting and Laser Beam Melting.
    Koike M; Greer P; Owen K; Lilly G; Murr LE; Gaytan SM; Martinez E; Okabe T
    Materials (Basel); 2011 Oct; 4(10):1776-1792. PubMed ID: 28824107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering.
    Wimler D; Lindemann J; Clemens H; Mayer S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ monitoring of the electrochemical behavior of cellular structured biomedical Ti-6Al-4V alloy fabricated by electron beam melting in simulated physiological fluid.
    Gai X; Bai Y; Li S; Hou W; Hao Y; Zhang X; Yang R; Misra RDK
    Acta Biomater; 2020 Apr; 106():387-395. PubMed ID: 32058079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-Processing of FDM 3D-Printed Polylactic Acid Parts by Laser Beam Cutting.
    Moradi M; Karami Moghadam M; Shamsborhan M; Bodaghi M; Falavandi H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32138209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications.
    Kim JH; Kim MY; Knowles JC; Choi S; Kang H; Park SH; Park SM; Kim HW; Park JT; Lee JH; Lee HH
    Dent Mater; 2020 Jul; 36(7):945-958. PubMed ID: 32475749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.