These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 33808013)
1. Raman and Fluorescence Enhancement Approaches in Graphene-Based Platforms for Optical Sensing and Imaging. Cortijo-Campos S; Ramírez-Jiménez R; de Andrés A Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808013 [TBL] [Abstract][Full Text] [Related]
2. Supported Ultra-Thin Alumina Membranes with Graphene as Efficient Interference Enhanced Raman Scattering Platforms for Sensing. Aguilar-Pujol M; Ramírez-Jiménez R; Xifre-Perez E; Cortijo-Campos S; Bartolomé J; Marsal LF; de Andrés A Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349274 [TBL] [Abstract][Full Text] [Related]
3. Efficient Heterostructures for Combined Interference and Plasmon Resonance Raman Amplification. Alvarez-Fraga L; Climent-Pascual E; Aguilar-Pujol M; Ramírez-Jiménez R; Jiménez-Villacorta F; Prieto C; de Andrés A ACS Appl Mater Interfaces; 2017 Feb; 9(4):4119-4125. PubMed ID: 28054769 [TBL] [Abstract][Full Text] [Related]
4. Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray. Yang L; Lee JH; Rathnam C; Hou Y; Choi JW; Lee KB Nano Lett; 2019 Nov; 19(11):8138-8148. PubMed ID: 31663759 [TBL] [Abstract][Full Text] [Related]
5. Controlled Electrodeposition of Gold on Graphene: Maximization of the Defect-Enhanced Raman Scattering Response. Ananthoju B; Biroju RK; Theis W; Dryfe RAW Small; 2019 Nov; 15(48):e1901555. PubMed ID: 31112374 [TBL] [Abstract][Full Text] [Related]
6. Strong Dependence of Surface Enhanced Raman Scattering on Structure of Graphene Oxide Film. Wang L; Zhang Y; Yang Y; Zhang J Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30002326 [TBL] [Abstract][Full Text] [Related]
7. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598 [TBL] [Abstract][Full Text] [Related]
8. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
9. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Lee HK; Lee YH; Koh CSL; Phan-Quang GC; Han X; Lay CL; Sim HYF; Kao YC; An Q; Ling XY Chem Soc Rev; 2019 Feb; 48(3):731-756. PubMed ID: 30475351 [TBL] [Abstract][Full Text] [Related]
10. Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates. Zhao Y; Li X; Du Y; Chen G; Qu Y; Jiang J; Zhu Y Nanoscale; 2014 Oct; 6(19):11112-20. PubMed ID: 25214169 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780 [TBL] [Abstract][Full Text] [Related]
12. Molecular selectivity of graphene-enhanced Raman scattering. Huang S; Ling X; Liang L; Song Y; Fang W; Zhang J; Kong J; Meunier V; Dresselhaus MS Nano Lett; 2015 May; 15(5):2892-901. PubMed ID: 25821897 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoworms: Optical properties and simultaneous SERS and fluorescence enhancement. Khan HI; Khan GA; Mehmood S; Khan AD; Ahmed W Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117111. PubMed ID: 31141771 [TBL] [Abstract][Full Text] [Related]
14. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage. Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637 [TBL] [Abstract][Full Text] [Related]
15. Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. Silver A; Kitadai H; Liu H; Granzier-Nakajima T; Terrones M; Ling X; Huang S Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30986978 [TBL] [Abstract][Full Text] [Related]
16. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple. Losurdo M; Yi C; Suvorova A; Rubanov S; Kim TH; Giangregorio MM; Jiao W; Bergmair I; Bruno G; Brown AS ACS Nano; 2014 Mar; 8(3):3031-41. PubMed ID: 24575951 [TBL] [Abstract][Full Text] [Related]
17. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Wang AX; Kong X Materials (Basel); 2015 Jun; 8(6):3024-3052. PubMed ID: 26900428 [TBL] [Abstract][Full Text] [Related]
18. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Zhao Y; Yang D; Li X; Liu Y; Hu X; Zhou D; Lu Y Nanoscale; 2017 Jan; 9(3):1087-1096. PubMed ID: 27973628 [TBL] [Abstract][Full Text] [Related]
19. Exploring graphene nanocolloids as potential substrates for the enhancement of Raman scattering. Sun S; Zhang Z; Wu P ACS Appl Mater Interfaces; 2013 Jun; 5(11):5085-90. PubMed ID: 23639455 [TBL] [Abstract][Full Text] [Related]
20. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]