BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 33808211)

  • 1. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle.
    Bouviere J; Fortunato RS; Dupuy C; Werneck-de-Castro JP; Carvalho DP; Louzada RA
    Antioxidants (Basel); 2021 Mar; 10(4):. PubMed ID: 33808211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mediators of Physical Activity Protection against ROS-Linked Skeletal Muscle Damage.
    Di Meo S; Napolitano G; Venditti P
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31226872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?
    Gomez-Cabrera MC; Salvador-Pascual A; Cabo H; Ferrando B; Viña J
    Free Radic Biol Med; 2015 Sep; 86():37-46. PubMed ID: 25889822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive.
    Kang C; O'Moore KM; Dickman JR; Ji LL
    Free Radic Biol Med; 2009 Nov; 47(10):1394-400. PubMed ID: 19686839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic review of p53 regulation of oxidative stress in skeletal muscle.
    Beyfuss K; Hood DA
    Redox Rep; 2018 Dec; 23(1):100-117. PubMed ID: 29298131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling.
    Radak Z; Zhao Z; Koltai E; Ohno H; Atalay M
    Antioxid Redox Signal; 2013 Apr; 18(10):1208-46. PubMed ID: 22978553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice.
    Ng SY; Mikhail A; Ljubicic V
    J Physiol; 2019 Sep; 597(18):4757-4778. PubMed ID: 31361024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmentalized muscle redox signals controlling exercise metabolism - Current state, future challenges.
    Henriquez-Olguin C; Meneses-Valdes R; Jensen TE
    Redox Biol; 2020 Aug; 35():101473. PubMed ID: 32122793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species.
    Niess AM; Simon P
    Front Biosci; 2007 Sep; 12():4826-38. PubMed ID: 17569613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise.
    Supruniuk E; Górski J; Chabowski A
    Antioxidants (Basel); 2023 Feb; 12(2):. PubMed ID: 36830059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage.
    Aoi W; Naito Y; Yoshikawa T
    Free Radic Biol Med; 2013 Dec; 65():1265-1272. PubMed ID: 24075894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
    Cobley JN; McHardy H; Morton JP; Nikolaidis MG; Close GL
    Free Radic Biol Med; 2015 Jul; 84():65-76. PubMed ID: 25841784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-induced hormesis and skeletal muscle health.
    Ji LL; Kang C; Zhang Y
    Free Radic Biol Med; 2016 Sep; 98():113-122. PubMed ID: 26916558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5195-207. PubMed ID: 27094017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle signaling, metabolism, and performance during sprint exercise in severe acute hypoxia after the ingestion of antioxidants.
    Morales-Alamo D; Guerra B; Ponce-González JG; Guadalupe-Grau A; Santana A; Martin-Rincon M; Gelabert-Rebato M; Cadefau JA; Cusso R; Dorado C; Calbet JAL
    J Appl Physiol (1985); 2017 Nov; 123(5):1235-1245. PubMed ID: 28819003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.