These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33808295)

  • 1. 3D Bioprinted Bacteriostatic Hyperelastic Bone Scaffold for Damage-Specific Bone Regeneration.
    Shokouhimehr M; Theus AS; Kamalakar A; Ning L; Cao C; Tomov ML; Kaiser JM; Goudy S; Willett NJ; Jang HW; LaRock CN; Hanna P; Lechtig A; Yousef M; Martins JDS; Nazarian A; Harris MB; Mahmoudi M; Serpooshan V
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33808295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation.
    Chen J; Huang D; Wang L; Hou J; Zhang H; Li Y; Zhong S; Wang Y; Wu Y; Huang W
    J Colloid Interface Sci; 2020 Aug; 574():162-173. PubMed ID: 32311538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: A novel approach to bone healing.
    Alluri R; Jakus A; Bougioukli S; Pannell W; Sugiyama O; Tang A; Shah R; Lieberman JR
    J Biomed Mater Res A; 2018 Apr; 106(4):1104-1110. PubMed ID: 29266747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties.
    Theus AS; Ning L; Kabboul G; Hwang B; Tomov ML; LaRock CN; Bauser-Heaton H; Mahmoudi M; Serpooshan V
    iScience; 2022 Sep; 25(9):104947. PubMed ID: 36065192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue.
    Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus.
    Sun X; Ma Z; Zhao X; Jin W; Zhang C; Ma J; Qiang L; Wang W; Deng Q; Yang H; Zhao J; Liang Q; Zhou X; Li T; Wang J
    Bioact Mater; 2021 Mar; 6(3):757-769. PubMed ID: 33024897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection.
    Wang M; Li H; Yang Y; Yuan K; Zhou F; Liu H; Zhou Q; Yang S; Tang T
    Bioact Mater; 2021 May; 6(5):1318-1329. PubMed ID: 33210025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration.
    Costa JB; Park J; Jorgensen AM; Silva-Correia J; Reis RL; Oliveira JM; Atala A; Yoo JJ; Lee SJ
    Chem Mater; 2020 Oct; 32(19):8733-8746. PubMed ID: 34295019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial.
    Jakus AE; Rutz AL; Jordan SW; Kannan A; Mitchell SM; Yun C; Koube KD; Yoo SC; Whiteley HE; Richter CP; Galiano RD; Hsu WK; Stock SR; Hsu EL; Shah RN
    Sci Transl Med; 2016 Sep; 8(358):358ra127. PubMed ID: 27683552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascularization of Natural and Synthetic Bone Scaffolds.
    Liu X; Jakus AE; Kural M; Qian H; Engler A; Ghaedi M; Shah R; Steinbacher DM; Niklason LE
    Cell Transplant; 2018 Aug; 27(8):1269-1280. PubMed ID: 30008231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded With Bone Marrow-Derived Mesenchymal Stem Cells for Bone Regeneration.
    Liu Q; Feng L; Chen Z; Lan Y; Liu Y; Li D; Yan C; Xu Y
    Front Bioeng Biotechnol; 2020; 8():697. PubMed ID: 32695767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Plasma-Based Bioink Stimulates Cell Proliferation and Differentiation in Bioprinted, Mineralized Constructs.
    Ahlfeld T; Cubo-Mateo N; Cometta S; Guduric V; Vater C; Bernhardt A; Akkineni AR; Lode A; Gelinsky M
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12557-12572. PubMed ID: 32092249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges.
    Pan RL; Martyniak K; Karimzadeh M; Gelikman DG; DeVries J; Sutter K; Coathup M; Razavi M; Sawh-Martinez R; Kean TJ
    J Exp Orthop; 2022 Sep; 9(1):95. PubMed ID: 36121526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head.
    Idaszek J; Costantini M; Karlsen TA; Jaroszewicz J; Colosi C; Testa S; Fornetti E; Bernardini S; Seta M; Kasarełło K; Wrzesień R; Cannata S; Barbetta A; Gargioli C; Brinchman JE; Święszkowski W
    Biofabrication; 2019 Jul; 11(4):044101. PubMed ID: 31151123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide Chitosan/Dextran Core/Shell Vascularized 3D Constructs for Wound Healing.
    Turner PR; Murray E; McAdam CJ; McConnell MA; Cabral JD
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32328-32339. PubMed ID: 32597164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental Biology-Inspired Strategies To Engineer 3D Bioprinted Bone Construct.
    Chawla S; Sharma A; Bandyopadhyay A; Ghosh S
    ACS Biomater Sci Eng; 2018 Oct; 4(10):3545-3560. PubMed ID: 33465903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.