These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 33808303)
1. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration. Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303 [TBL] [Abstract][Full Text] [Related]
2. In vivo biocompatibility and degradation of novel Polycaprolactone-Biphasic Calcium phosphate scaffolds used as a bone substitute. Thuaksuban N; Pannak R; Boonyaphiphat P; Monmaturapoj N Biomed Mater Eng; 2018; 29(2):253-267. PubMed ID: 29457598 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect. Kim JH; Linh NT; Min YK; Lee BT J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961 [TBL] [Abstract][Full Text] [Related]
4. Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes. Kang HJ; Makkar P; Padalhin AR; Lee GH; Im SB; Lee BT Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110694. PubMed ID: 32204008 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of new bone formation in critical-sized rat calvarial defect using 3D printed polycaprolactone/tragacanth gum-bioactive glass composite scaffolds. Janmohammadi M; Doostmohammadi N; Bahraminasab M; Nourbakhsh MS; Arab S; Asgharzade S; Ghanbari A; Satari A Int J Biol Macromol; 2024 Jun; 270(Pt 1):132361. PubMed ID: 38750857 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630 [TBL] [Abstract][Full Text] [Related]
7. Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria. Liu F; Liu Y; Li X; Wang X; Li D; Chung S; Chen C; Lee IS J Biomater Appl; 2019 Apr; 33(9):1168-1177. PubMed ID: 30665312 [TBL] [Abstract][Full Text] [Related]
8. Assessment of artificial bone materials with different structural pore sizes obtained from 3D printed polycaprolactone/ Qianjuan Z; Rong S; Shengxi L; Xuanhao L; Bin L; Fuxiang S Biomed Mater; 2024 Sep; 19(6):. PubMed ID: 39208855 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo studies of BMP-2-loaded PCL-gelatin-BCP electrospun scaffolds. Kim BR; Nguyen TB; Min YK; Lee BT Tissue Eng Part A; 2014 Dec; 20(23-24):3279-89. PubMed ID: 24935525 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO Sa MW; Nguyen BB; Moriarty RA; Kamalitdinov T; Fisher JP; Kim JY Biotechnol Bioeng; 2018 Apr; 115(4):989-999. PubMed ID: 29240243 [TBL] [Abstract][Full Text] [Related]
11. In Vivo Analysis of the Biocompatibility and Bone Healing Capacity of a Novel Bone Grafting Material Combined with Hyaluronic Acid. Pröhl A; Batinic M; Alkildani S; Hahn M; Radenkovic M; Najman S; Jung O; Barbeck M Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062885 [TBL] [Abstract][Full Text] [Related]
12. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling. Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655 [TBL] [Abstract][Full Text] [Related]
13. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies. Veronesi F; Giavaresi G; Guarino V; Raucci MG; Sandri M; Tampieri A; Ambrosio L; Fini M J Biomed Mater Res A; 2015 Sep; 103(9):2932-41. PubMed ID: 25689266 [TBL] [Abstract][Full Text] [Related]
14. In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb Kiyochi Junior HJ; Candido AG; Bonadio TGM; da Cruz JA; Baesso ML; Weinand WR; Hernandes L J Mater Sci Mater Med; 2020 Jul; 31(8):71. PubMed ID: 32712717 [TBL] [Abstract][Full Text] [Related]
15. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity. Dahlin C; Obrecht M; Dard M; Donos N Clin Oral Implants Res; 2015 Jul; 26(7):814-22. PubMed ID: 24593049 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends. Padalhin AR; Thuy Ba Linh N; Ki Min Y; Lee BT J Biomater Sci Polym Ed; 2014; 25(5):487-503. PubMed ID: 24450757 [TBL] [Abstract][Full Text] [Related]
17. Improved bone regeneration using collagen-coated biphasic calcium phosphate with high porosity in a rabbit calvarial model. Seo SJ; Kim YG Biomed Mater; 2020 Dec; 16(1):015012. PubMed ID: 33325377 [TBL] [Abstract][Full Text] [Related]
18. Biofabrication of SDF-1 Functionalized 3D-Printed Cell-Free Scaffolds for Bone Tissue Regeneration. Lauer A; Wolf P; Mehler D; Götz H; Rüzgar M; Baranowski A; Henrich D; Rommens PM; Ritz U Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245268 [TBL] [Abstract][Full Text] [Related]
19. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects. Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282 [TBL] [Abstract][Full Text] [Related]
20. Porosity effect of 3D-printed polycaprolactone membranes on calvarial defect model for guided bone regeneration. Shim JH; Jeong JH; Won JY; Bae JH; Ahn G; Jeon H; Yun WS; Bae EB; Choi JW; Lee SH; Jeong CM; Chung HY; Huh JB Biomed Mater; 2017 Dec; 13(1):015014. PubMed ID: 29155411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]