BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33808493)

  • 1. Competitive Real-Time Near Infrared (NIR) Vein Finder Imaging Device to Improve Peripheral Subcutaneous Vein Selection in Venipuncture for Clinical Laboratory Testing.
    Francisco MD; Chen WF; Pan CT; Lin MC; Wen ZH; Liao CF; Shiue YL
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes Utilizing near Infrared (NIR) Light to Improve Peripheral Subcutaneous Vein Selection for Phlebotomy.
    Pan CT; Francisco MD; Yen CK; Wang SY; Shiue YL
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a near-infrared vein finder to define cortical veins and dural sinuses prior to dural opening.
    Goldschmidt E; Faraji AH; Jankowitz BT; Gardner P; Friedlander RM
    J Neurosurg; 2019 Aug; 133(4):1202-1209. PubMed ID: 31374554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared system's efficiency for peripheral intravenous cannulation in a level III neonatal intensive care unit: a cross-sectional study.
    Ferrario S; Sorrentino G; Cavallaro G; Cortinovis I; Traina S; Muscolo S; Agosteo A; Santini G; Lagostina E; Mosca F; Plevani L
    Eur J Pediatr; 2022 Jul; 181(7):2747-2755. PubMed ID: 35482093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary Study for Designing a Novel Vein-Visualizing Device.
    Kim D; Kim Y; Yoon S; Lee D
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28178227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vein Visualization With a Near Infrared Imaging Device and Its Impact on Students' and Nurses' Skills in an Academic Teaching University Hospital.
    Renno I; Horch RE; Ludolph I; Cai A; Arkudas A
    J Infus Nurs; 2024 Jul-Aug 01; 47(4):249-254. PubMed ID: 38968587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of superficial vein dynamics in dorsal hand by near-infrared imaging in response to elevated local temperature.
    Shourav MK; Choi J; Kim JK
    J Biomed Opt; 2021 Feb; 26(2):. PubMed ID: 33624459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time dual-modal vein imaging system.
    Mela CA; Lemmer DP; Bao FS; Papay F; Hicks T; Liu Y
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):203-213. PubMed ID: 30291592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable robot for autonomous venipuncture using 3D near infrared image guidance.
    Chen A; Nikitczuk K; Nikitczuk J; Maguire T; Yarmush M
    Technology (Singap World Sci); 2013 Sep; 1(1):72-87. PubMed ID: 26120592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared imaging of subcutaneous veins.
    Zharov VP; Ferguson S; Eidt JF; Howard PC; Fink LM; Waner M
    Lasers Surg Med; 2004; 34(1):56-61. PubMed ID: 14755425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A VCSEL-Based NIR Transillumination System for Morpho-Functional Imaging.
    Merlo S; Bello V; Bodo E; Pizzurro S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid constraint optimization for 3D subcutaneous vein reconstruction by near-infrared images.
    Wu C; Yang J; Zhu J; Cong W; Ai D; Song H; Liang X; Wang Y
    Comput Methods Programs Biomed; 2018 Sep; 163():123-133. PubMed ID: 30119847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does infrared visualization improve selection of venipuncture sites for indwelling needle at the forearm in second-year nursing students?
    Fukuroku K; Narita Y; Taneda Y; Kobayashi S; Gayle AA
    Nurse Educ Pract; 2016 May; 18():1-9. PubMed ID: 27235559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FPGA-Based Two-Dimensional Matched Filter Design for Vein Imaging Systems.
    Xiang W; Li D; Sun J; Liu J; Zhou G; Gao Y; Cui X
    IEEE J Transl Eng Health Med; 2021; 9():1800510. PubMed ID: 34725577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vein visualization: patient characteristic factors and efficacy of a new infrared vein finder technology.
    Chiao FB; Resta-Flarer F; Lesser J; Ng J; Ganz A; Pino-Luey D; Bennett H; Perkins C; Witek B
    Br J Anaesth; 2013 Jun; 110(6):966-71. PubMed ID: 23384732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-spectral imaging with infrared sensitive organic light emitting diode.
    Kim DY; Lai TH; Lee JW; Manders JR; So F
    Sci Rep; 2014 Aug; 4():5946. PubMed ID: 25091589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The System Design and Evaluation of a 7-DOF Image-Guided Venipuncture Robot.
    Balter ML; Chen AI; Maguire TJ; Yarmush ML
    IEEE Trans Robot; 2015 Aug; 31(4):1044-1053. PubMed ID: 26257588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.
    Wang S; Zhao J; Lui H; He Q; Zeng H
    Skin Res Technol; 2013 Feb; 19(1):20-6. PubMed ID: 22724585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented reality based real-time subcutaneous vein imaging system.
    Ai D; Yang J; Fan J; Zhao Y; Song X; Shen J; Shao L; Wang Y
    Biomed Opt Express; 2016 Jul; 7(7):2565-85. PubMed ID: 27446690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.