BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 33808495)

  • 1. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells.
    Prochownik EV; Wang H
    Cells; 2021 Mar; 10(4):. PubMed ID: 33808495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.
    Feron O
    Radiother Oncol; 2009 Sep; 92(3):329-33. PubMed ID: 19604589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry analysis shows the biosynthetic pathways supported by pyruvate carboxylase in highly invasive breast cancer cells.
    Phannasil P; Ansari IH; El Azzouny M; Longacre MJ; Rattanapornsompong K; Burant CF; MacDonald MJ; Jitrapakdee S
    Biochim Biophys Acta Mol Basis Dis; 2017 Feb; 1863(2):537-551. PubMed ID: 27890529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli.
    Soma Y; Yamaji T; Matsuda F; Hanai T
    J Biosci Bioeng; 2017 May; 123(5):625-633. PubMed ID: 28214243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.
    Wang H; Lu J; Kulkarni S; Zhang W; Gorka JE; Mandel JA; Goetzman ES; Prochownik EV
    J Biol Chem; 2019 Apr; 294(14):5466-5486. PubMed ID: 30755479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-Dependent Anaplerosis.
    Christen S; Lorendeau D; Schmieder R; Broekaert D; Metzger K; Veys K; Elia I; Buescher JM; Orth MF; Davidson SM; Grünewald TG; De Bock K; Fendt SM
    Cell Rep; 2016 Oct; 17(3):837-848. PubMed ID: 27732858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical and Biochemical Characterization of TP0037, a d-Lactate Dehydrogenase, Supports an Acetogenic Energy Conservation Pathway in Treponema pallidum.
    Deka RK; Liu WZ; Norgard MV; Brautigam CA
    mBio; 2020 Sep; 11(5):. PubMed ID: 32963009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The cancer tumor: a metabolic parasite?].
    Icard P; Lincet H
    Bull Cancer; 2013 May; 100(5):427-33. PubMed ID: 23615669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals.
    Liu X; Cooper DE; Cluntun AA; Warmoes MO; Zhao S; Reid MA; Liu J; Lund PJ; Lopes M; Garcia BA; Wellen KE; Kirsch DG; Locasale JW
    Cell; 2018 Oct; 175(2):502-513.e13. PubMed ID: 30245009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of substrate utilization by the mitochondrial pyruvate carrier.
    Vacanti NM; Divakaruni AS; Green CR; Parker SJ; Henry RR; Ciaraldi TP; Murphy AN; Metallo CM
    Mol Cell; 2014 Nov; 56(3):425-435. PubMed ID: 25458843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.
    DeBerardinis RJ; Mancuso A; Daikhin E; Nissim I; Yudkoff M; Wehrli S; Thompson CB
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19345-50. PubMed ID: 18032601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases.
    Reiter RJ; Sharma R; Rosales-Corral S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential contribution of pyruvate carboxylation to anaplerosis and cataplerosis during non-gluconeogenic and gluconeogenic conditions in HepG2 cells.
    Wattanavanitchakorn S; Ansari IH; El Azzouny M; Longacre MJ; Stoker SW; MacDonald MJ; Jitrapakdee S
    Arch Biochem Biophys; 2019 Nov; 676():108124. PubMed ID: 31585072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Redox State and Efficiency of Glucose Oxidation With miR Based Suppression of Maladaptive NADPH-Dependent Malic Enzyme 1 Expression in Hypertrophied Hearts.
    Lahey R; Carley AN; Wang X; Glass CE; Accola KD; Silvestry S; O'Donnell JM; Lewandowski ED
    Circ Res; 2018 Mar; 122(6):836-845. PubMed ID: 29386187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxycitrate causes altered pyruvate metabolism by tumorigenic cells.
    Board M; Newsholme E
    Biochem Mol Biol Int; 1996 Nov; 40(5):1047-56. PubMed ID: 8955895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pyruvate carboxylase-pyruvate dehydrogenase axis in islet pyruvate metabolism: Going round in circles?
    Sugden MC; Holness MJ
    Islets; 2011; 3(6):302-19. PubMed ID: 21934355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling of substrate consumption in the murine sTAC model of heart failure.
    Turer A; Altamirano F; Schiattarella GG; May H; Gillette TG; Malloy CR; Merritt ME
    J Mol Cell Cardiol; 2019 Sep; 134():144-153. PubMed ID: 31340162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxylation and anaplerosis in neurons and glia.
    Hassel B
    Mol Neurobiol; 2000; 22(1-3):21-40. PubMed ID: 11414279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.