These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 33808775)
1. Graphene Oxide-Silver Nanoparticle Nanocomposites Induce Oxidative Stress and Aberrant Methylation in Caprine Fetal Fibroblast Cells. Yuan YG; Cai HQ; Wang JL; Mesalam A; Md Talimur Reza AM; Li L; Chen L; Qian C Cells; 2021 Mar; 10(3):. PubMed ID: 33808775 [TBL] [Abstract][Full Text] [Related]
2. Cytotoxicity and Transcriptomic Analysis of Silver Nanoparticles in Mouse Embryonic Fibroblast Cells. Gurunathan S; Qasim M; Park C; Yoo H; Choi DY; Song H; Park C; Kim JH; Hong K Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30453526 [TBL] [Abstract][Full Text] [Related]
3. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis and autophagy in human cervical cancer cells. Yuan YG; Gurunathan S Int J Nanomedicine; 2017; 12():6537-6558. PubMed ID: 28919753 [TBL] [Abstract][Full Text] [Related]
4. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma. Yuan YG; Wang YH; Xing HH; Gurunathan S Int J Nanomedicine; 2017; 12():5819-5839. PubMed ID: 28860751 [TBL] [Abstract][Full Text] [Related]
5. Multiple RNA Profiling Reveal Epigenetic Toxicity Effects of Oxidative Stress by Graphene Oxide Silver Nanoparticles in-vitro. Yuan YG; Zhang YX; Liu SZ; Reza AMMT; Wang JL; Li L; Cai HQ; Zhong P; Kong IK Int J Nanomedicine; 2023; 18():2855-2871. PubMed ID: 37283715 [TBL] [Abstract][Full Text] [Related]
6. Identification of circular RNAs expression pattern in caprine fetal fibroblast cells exposed to a chronic non-cytotoxic dose of graphene oxide-silver nanoparticle nanocomposites. Yuan YG; Xing YT; Liu SZ; Li L; Reza AMMT; Cai HQ; Wang JL; Wu P; Zhong P; Kong IK Front Bioeng Biotechnol; 2023; 11():1090814. PubMed ID: 37020511 [TBL] [Abstract][Full Text] [Related]
7. Skin Toxicity Assessment of Silver Nanoparticles in a 3D Epidermal Model Compared to 2D Keratinocytes. Chen L; Wu M; Jiang S; Zhang Y; Li R; Lu Y; Liu L; Wu G; Liu Y; Xie L; Xu L Int J Nanomedicine; 2019; 14():9707-9719. PubMed ID: 31849463 [TBL] [Abstract][Full Text] [Related]
8. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). Gurunathan S; Kang MH; Jeyaraj M; Kim JH Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30634552 [TBL] [Abstract][Full Text] [Related]
9. Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116. Gurunathan S; Qasim M; Park C; Yoo H; Kim JH; Hong K Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30072642 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of silver nanoparticles-induced cytotoxicity and apoptosis in rat tracheal epithelial cells. Tang J; Lu X; Chen B; Cai E; Liu W; Jiang J; Chen F; Shan X; Zhang H J Toxicol Sci; 2019; 44(3):155-165. PubMed ID: 30842368 [TBL] [Abstract][Full Text] [Related]
11. Cytotoxicity of water-soluble mPEG-SH-coated silver nanoparticles in HL-7702 cells. Song XL; Li B; Xu K; Liu J; Ju W; Wang J; Liu XD; Li J; Qi YF Cell Biol Toxicol; 2012 Aug; 28(4):225-37. PubMed ID: 22415596 [TBL] [Abstract][Full Text] [Related]
12. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Han JW; Gurunathan S; Choi YJ; Kim JH Int J Nanomedicine; 2017; 12():7529-7549. PubMed ID: 29066898 [TBL] [Abstract][Full Text] [Related]
13. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Gurunathan S; Raman J; Abd Malek SN; John PA; Vikineswary S Int J Nanomedicine; 2013; 8():4399-413. PubMed ID: 24265551 [TBL] [Abstract][Full Text] [Related]
14. Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation. Oh SJ; Kim H; Liu Y; Han HK; Kwon K; Chang KH; Park K; Kim Y; Shim K; An SS; Lee MY Toxicol Lett; 2014 Mar; 225(3):422-32. PubMed ID: 24463055 [TBL] [Abstract][Full Text] [Related]
15. Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Quan JH; Gao FF; Ismail HAHA; Yuk JM; Cha GH; Chu JQ; Lee YH Int J Nanomedicine; 2020; 15():3695-3716. PubMed ID: 32547023 [TBL] [Abstract][Full Text] [Related]
16. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Gurunathan S; Han JW; Eppakayala V; Jeyaraj M; Kim JH Biomed Res Int; 2013; 2013():535796. PubMed ID: 23936814 [TBL] [Abstract][Full Text] [Related]
17. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Gurunathan S; Han JW; Park JH; Kim E; Choi YJ; Kwon DN; Kim JH Int J Nanomedicine; 2015; 10():6257-76. PubMed ID: 26491296 [TBL] [Abstract][Full Text] [Related]
18. Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Yin N; Liu Q; Liu J; He B; Cui L; Li Z; Yun Z; Qu G; Liu S; Zhou Q; Jiang G Small; 2013 May; 9(9-10):1831-41. PubMed ID: 23427069 [TBL] [Abstract][Full Text] [Related]
19. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Gurunathan S; Park JH; Han JW; Kim JH Int J Nanomedicine; 2015; 10():4203-22. PubMed ID: 26170659 [TBL] [Abstract][Full Text] [Related]
20. Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in vitro. Bin-Jumah M; Al-Abdan M; Albasher G; Alarifi S Int J Nanomedicine; 2020; 15():1537-1548. PubMed ID: 32210550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]