These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33808899)

  • 1. Molecular Dynamics Simulations and Theoretical Model for Engineering Tensile Properties of Single-and Multi-Walled Carbon Nanotubes.
    Shirasu K; Kitayama S; Liu F; Yamamoto G; Hashida T
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Assisted High-Throughput Molecular Dynamics Simulation of High-Mechanical Performance Carbon Nanotube Structure.
    Xiang Y; Shimoyama K; Shirasu K; Yamamoto G
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33316937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the effects of carbon nanotube continuity and interfacial bonding on composite strength and stiffness.
    Jensen BD; Odegard GM; Kim JW; Sauti G; Siochi EJ; Wise KE
    Compos Sci Technol; 2018 Sep; 166():10-19. PubMed ID: 31359899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.
    Liou KH; Tsou NT; Kang DY
    Nanoscale; 2015 Oct; 7(39):16222-9. PubMed ID: 26204559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.
    Hou Y; Tang J; Zhang H; Qian C; Feng Y; Liu J
    ACS Nano; 2009 May; 3(5):1057-62. PubMed ID: 19397293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Nanotube Radius and the Volume Fraction on the Mechanical Properties of Carbon Nanotube-Reinforced Aluminum Metal Matrix Composites.
    Suk ME
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Very-high-strength (60-GPa) carbon nanotube fiber design based on molecular dynamics simulations.
    Cornwell CF; Welch CR
    J Chem Phys; 2011 May; 134(20):204708. PubMed ID: 21639468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics analysis on buckling of defective carbon nanotubes.
    Kulathunga DD; Ang KK; Reddy JN
    J Phys Condens Matter; 2010 Sep; 22(34):345301. PubMed ID: 21403253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Preparation and Strengthening Strategies towards High-Strength Carbon Nanotube Fibers.
    Zhu Y; Yue H; Aslam MJ; Bai Y; Zhu Z; Wei F
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube bundles with tensile strength over 80 GPa.
    Bai Y; Zhang R; Ye X; Zhu Z; Xie H; Shen B; Cai D; Liu B; Zhang C; Jia Z; Zhang S; Li X; Wei F
    Nat Nanotechnol; 2018 Jul; 13(7):589-595. PubMed ID: 29760522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chirality-Dependent Mechanical Properties of Bundles and Thin Films Composed of Covalently Cross-Linked Carbon Nanotubes.
    Kayang KW; Banna AH; Volkov AN
    Langmuir; 2022 Feb; 38(6):1977-1994. PubMed ID: 35104409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Great Reduction of a Carbon Nanotube's Mechanical Performance by a Few Topological Defects.
    Zhu L; Wang J; Ding F
    ACS Nano; 2016 Jun; 10(6):6410-5. PubMed ID: 27251448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.
    Yuan W; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2065-73. PubMed ID: 22432973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buckling analysis of defective cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains using molecular dynamics simulations.
    Ajori S; Ansari R; Parsapour H
    J Mol Model; 2016 Dec; 22(12):298. PubMed ID: 27900580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Mechanical, Electrical and Thermal Properties of Fluororubber by Constructing Interconnected Carbon Nanotube Networks with Chemical Bonds and F-H Polar Interactions.
    Chen Y; Wu Y; Li J; Peng X; Wang S; Jin H
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: mechanical and electrical performance beyond carbon-fiber composites.
    Cheng Q; Wang B; Zhang C; Liang Z
    Small; 2010 Mar; 6(6):763-7. PubMed ID: 20183814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Mechanical and Adhesion Properties of Carbon Nanotubes Using Aligned Cellulose Wrap (Cellulose Nanotube): A Molecular Dynamics Study.
    Shishehbor M; Pouranian MR
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31963187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensile properties of millimeter-long multi-walled carbon nanotubes.
    Kim HI; Wang M; Lee SK; Kang J; Nam JD; Ci L; Suhr J
    Sci Rep; 2017 Aug; 7(1):9512. PubMed ID: 28842673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density.
    Bai Y; Shen B; Zhang S; Zhu Z; Sun S; Gao J; Li B; Wang Y; Zhang R; Wei F
    Adv Mater; 2019 Mar; 31(9):e1800680. PubMed ID: 30357976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures.
    Kwon H; Kawasaki A
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6542-8. PubMed ID: 19908562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.