BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 33809032)

  • 1. Recent Advances in Iron Chelation and Gallium-Based Therapies for Antibiotic Resistant Bacterial Infections.
    Vinuesa V; McConnell MJ
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-withdrawing anti-infectives for new host-directed therapies based on iron dependence, the Achilles' heel of antibiotic-resistant microbes.
    Holbein BE; Ang MTC; Allan DS; Chen W; Lehmann C
    Environ Chem Lett; 2021; 19(4):2789-2808. PubMed ID: 33907538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibiotic-Resistant
    Parquet MDC; Savage KA; Allan DS; Ang MTC; Chen W; Logan SM; Holbein BE
    Antimicrob Agents Chemother; 2019 Sep; 63(9):. PubMed ID: 31209004
    [No Abstract]   [Full Text] [Related]  

  • 4. Promises and failures of gallium as an antibacterial agent.
    Minandri F; Bonchi C; Frangipani E; Imperi F; Visca P
    Future Microbiol; 2014; 9(3):379-97. PubMed ID: 24762310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo biological activities of iron chelators and gallium nitrate against Acinetobacter baumannii.
    de Léséleuc L; Harris G; KuoLee R; Chen W
    Antimicrob Agents Chemother; 2012 Oct; 56(10):5397-400. PubMed ID: 22825117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections.
    Goss CH; Kaneko Y; Khuu L; Anderson GD; Ravishankar S; Aitken ML; Lechtzin N; Zhou G; Czyz DM; McLean K; Olakanmi O; Shuman HA; Teresi M; Wilhelm E; Caldwell E; Salipante SJ; Hornick DB; Siehnel RJ; Becker L; Britigan BE; Singh PK
    Sci Transl Med; 2018 Sep; 10(460):. PubMed ID: 30257953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron should be restricted in acute infection.
    Scott CR; Holbein BE; Lehmann CD
    Front Biosci (Landmark Ed); 2020 Jan; 25(4):673-682. PubMed ID: 31585910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of iron chelators with therapeutic application.
    Zhou T; Ma Y; Kong X; Hider RC
    Dalton Trans; 2012 Jun; 41(21):6371-89. PubMed ID: 22391807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination Therapy with Gallium Protoporphyrin and Gallium Nitrate Exhibits Enhanced Antimicrobial Activity
    Choi SR; Talmon GA; Hearne K; Woo J; Truong VL; Britigan BE; Narayanasamy P
    Mol Pharm; 2023 Aug; 20(8):4058-4070. PubMed ID: 37471668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-inflammatory and anti-bacterial effects of iron chelation in experimental sepsis.
    Islam S; Jarosch S; Zhou J; Parquet Mdel C; Toguri JT; Colp P; Holbein BE; Lehmann C
    J Surg Res; 2016 Jan; 200(1):266-73. PubMed ID: 26235905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-targeting antitumor activity of gallium compounds and novel insights into triapine(®)-metal complexes.
    Chitambar CR; Antholine WE
    Antioxid Redox Signal; 2013 Mar; 18(8):956-72. PubMed ID: 22900955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections.
    Bruhn KW; Spellberg B
    Curr Opin Microbiol; 2015 Oct; 27():57-61. PubMed ID: 26261881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing of gallium-based drugs for antibacterial therapy.
    Bonchi C; Imperi F; Minandri F; Visca P; Frangipani E
    Biofactors; 2014; 40(3):303-12. PubMed ID: 24532037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of clinically useful iron(III)-selective chelators.
    Liu ZD; Hider RC
    Med Res Rev; 2002 Jan; 22(1):26-64. PubMed ID: 11746175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of dimethylhydroxypyridinone interactions with iron(iii) and the catalysis of iron(iii) ligand exchange reactions: implications for bacterial iron transport and combination chelation therapies.
    Harrington JM; Mysore MM; Crumbliss AL
    Dalton Trans; 2018 May; 47(20):6954-6964. PubMed ID: 29721567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallotherapeutics development in the age of iron-clad bacteria.
    Centola G; Xue F; Wilks A
    Metallomics; 2020 Dec; 12(12):1863-1877. PubMed ID: 33242314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of iron and chelators on infections in iron overload and non iron loaded conditions: prospects for the design of new antimicrobial therapies.
    Kontoghiorghes GJ; Kolnagou A; Skiada A; Petrikkos G
    Hemoglobin; 2010 Jun; 34(3):227-39. PubMed ID: 20524813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting bacterial iron acquisition: siderophore conjugates.
    Ji C; Juárez-Hernández RE; Miller MJ
    Future Med Chem; 2012 Mar; 4(3):297-313. PubMed ID: 22393938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing microbial iron chelators to develop innovative therapeutic agents.
    Ribeiro M; Sousa CA; Simões M
    J Adv Res; 2022 Jul; 39():89-101. PubMed ID: 35777919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of LpxC Increases the Activity of Iron Chelators and Gallium Nitrate in Multidrug-Resistant
    Vinuesa V; Cruces R; Nonnoi F; McConnell MJ
    Antibiotics (Basel); 2021 May; 10(5):. PubMed ID: 34065605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.