These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33809134)

  • 1. Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array.
    Tharwat MM; Almalki A; Mahros AM
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell.
    Rehman Q; Khan AD; Khan AD; Noman M; Ali H; Rauf A; Ahmad MS
    RSC Adv; 2019 Oct; 9(59):34207-34213. PubMed ID: 35530006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits.
    Hägglund C; Kasemo B
    Opt Express; 2009 Jul; 17(14):11944-57. PubMed ID: 19582109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles.
    Chaudhry FA; Escandell L; López-Fraguas E; Vergaz R; Sánchez-Pena JM; García-Cámara B
    Sci Rep; 2022 Jun; 12(1):9240. PubMed ID: 35655090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple Optical Model Well Explains Plasmonic-Nanoparticle-Enhanced Spectral Photocurrent in Optically Thin Solar Cells.
    Tanabe K
    Nanoscale Res Lett; 2016 Dec; 11(1):236. PubMed ID: 27142874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Absorption Spectra of an Ultra-Wideband Metamaterial Absorber in the Visible and Near-Infrared Regions.
    Tharwat MM; Alsulami AR; Mahros AM
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrays of Plasmonic Nanostructures for Absorption Enhancement in Perovskite Thin Films.
    Shen T; Tan Q; Dai Z; Padture NP; Pacifici D
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32660111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-Processed Plasmonic-Dielectric Sunlight-Collecting Nanofilms for Solar Thermoelectric Application.
    Lee DH; Pyun SB; Bae Y; Kang DP; Park JW; Cho EC
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43583-43595. PubMed ID: 29172424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic and silicon spherical nanoparticle antireflective coatings.
    Baryshnikova KV; Petrov MI; Babicheva VE; Belov PA
    Sci Rep; 2016 Mar; 6():22136. PubMed ID: 26926602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes.
    Hylton NP; Li XF; Giannini V; Lee KH; Ekins-Daukes NJ; Loo J; Vercruysse D; Van Dorpe P; Sodabanlu H; Sugiyama M; Maier SA
    Sci Rep; 2013 Oct; 3():2874. PubMed ID: 24096686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study.
    Dawi EA; Karar AA; Mustafa E; Nur O
    Nanoscale Res Lett; 2021 Sep; 16(1):149. PubMed ID: 34542730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large plasmonic absorption enhancement effect of triangular silver nanowires in silicon.
    Shahriar Sabuktagin M; Syifa Hamdan K
    R Soc Open Sci; 2020 Jul; 7(7):191926. PubMed ID: 32874602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic and photonic enhancement of photovoltaic characteristics of indium-rich InGaN p-n junction solar cells.
    Kumawat UK; Das A; Kumar K; Dhawan A
    Opt Express; 2020 Apr; 28(8):11806-11821. PubMed ID: 32403684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells.
    Akimov YA; Koh WS
    Nanotechnology; 2010 Jun; 21(23):235201. PubMed ID: 20463389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling plasmonic scattering combined with thin-film optics.
    Schmid M; Klenk R; Lux-Steiner MCh; Topic M; Krc J
    Nanotechnology; 2011 Jan; 22(2):025204. PubMed ID: 21135483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells.
    Li Y; Yan X; Wu Y; Zhang X; Ren X
    Nanoscale Res Lett; 2015 Dec; 10(1):436. PubMed ID: 26546326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-layer Fabry-Perot/SPP aluminum absorber in the visible and near-infrared region.
    Shu S; Li YY
    Opt Lett; 2015 Mar; 40(6):934-7. PubMed ID: 25768150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.