These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33809316)

  • 1. Laser Ablation of Aluminum Near the Critical Regime: A Computational Gas-Dynamical Model with Temperature-Dependent Physical Parameters.
    Terragni J; Miotello A
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of phase explosion in the nanosecond laser ablation of aluminum.
    Mazzi A; Miotello A
    J Colloid Interface Sci; 2017 Mar; 489():126-130. PubMed ID: 27562512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite.
    Ionin AA; Kudryashov SI; Seleznev LV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):016404. PubMed ID: 20866744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic evolution of phase explosion during high-power nanosecond laser ablation.
    Lu Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016410. PubMed ID: 12636614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminum interactions in air.
    Wu B; Shin YC; Pakhal H; Laurendeau NM; Lucht RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026405. PubMed ID: 17930160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of the morphological evolution of the millisecond-nanosecond combined-pulse laser ablation of aluminum alloy.
    Yuan BS; Wang D; Dong Y; Zhang W; Jin GY
    Appl Opt; 2018 Jul; 57(20):5743-5748. PubMed ID: 30118041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid modeling of the laser ablation depth as a function of the pulse duration for conductors.
    Laville S; Vidal F; Johnston TW; Barthélemy O; Chaker M; Drogoff BL; Margot J; Sabsabi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066415. PubMed ID: 12513420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic theory analysis of laser ablation of carbon.
    Shusser M
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3781-9. PubMed ID: 19051935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets.
    Chen Z; Vertes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036316. PubMed ID: 18517520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.
    Venugopalan V; Nishioka NS; Mikić BB
    Biophys J; 1995 Oct; 69(4):1259-71. PubMed ID: 8534796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the role of beam homogeneity on the mechanical coupling of laser-ablation-generated impulse.
    Terragni J; Battocchio P; Bazzanella N; Orlandi M; Burger WJ; Battiston R; Miotello A
    Appl Opt; 2021 Nov; 60(31):H37-H44. PubMed ID: 34807197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of ultrashort pulse laser ablation of solid targets by measuring the ablation-generated momentum using a torsion pendulum.
    Zhang N; Wang W; Zhu X; Liu J; Xu K; Huang P; Zhao J; Li R; Wang M
    Opt Express; 2011 Apr; 19(9):8870-8. PubMed ID: 21643140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.
    Chan KF; Vassar GJ; Pfefer TJ; Teichman JM; Glickman RD; Weintraub ST; Welch AJ
    Lasers Surg Med; 1999; 25(1):22-37. PubMed ID: 10421883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Femtosecond to Nanosecond Laser Microstructuring of Conical Aluminum Surfaces by Reactive Gas Assisted Laser Ablation.
    Rauh S; Wöbbeking K; Li M; Schade W; Hübner EG
    Chemphyschem; 2020 Aug; 21(15):1644-1652. PubMed ID: 32558311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO
    Li G; Cheng M; Li X
    Appl Opt; 2016 Sep; 55(25):7042-9. PubMed ID: 27607281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-generated plasma plume expansion: combined continuous-microscopic modeling.
    Itina TE; Hermann J; Delaporte P; Sentis M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066406. PubMed ID: 12513411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation.
    Nahen K; Vogel A
    J Biomed Opt; 2002 Apr; 7(2):165-78. PubMed ID: 11966301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.