These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33809330)
1. One Heat Shock Transcription Factor Confers High Thermal Tolerance in Clematis Plants. Wang R; Mao C; Jiang C; Zhang L; Peng S; Zhang Y; Feng S; Ming F Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809330 [TBL] [Abstract][Full Text] [Related]
2. Insights into heat response mechanisms in Clematis species: physiological analysis, expression profiles and function verification. Zhang H; Jiang C; Wang R; Zhang L; Gai R; Peng S; Zhang Y; Mao C; Lou Y; Mo J; Feng S; Ming F Plant Mol Biol; 2021 Aug; 106(6):569-587. PubMed ID: 34260001 [TBL] [Abstract][Full Text] [Related]
3. Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida. Jiang C; Bi Y; Mo J; Zhang R; Qu M; Feng S; Essemine J Sci Rep; 2020 Jun; 10(1):8883. PubMed ID: 32483281 [TBL] [Abstract][Full Text] [Related]
4. Introduction of Arabidopsis's heat shock factor HsfA1d mitigates adverse effects of heat stress on potato (Solanum tuberosum L.) plant. Shah Z; Shah SH; Ali GS; Munir I; Khan RS; Iqbal A; Ahmed N; Jan A Cell Stress Chaperones; 2020 Jan; 25(1):57-63. PubMed ID: 31898287 [TBL] [Abstract][Full Text] [Related]
5. Gai WX; Ma X; Li Y; Xiao JJ; Khan A; Li QH; Gong ZH Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171626 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome Profiling of Clematis apiifolia: Insights into Heat-Stress Responses. Gao L; Ma Y; Wang P; Wang S; Yang R; Wang Q; Li L; Li Y DNA Cell Biol; 2017 Nov; 36(11):938-946. PubMed ID: 28945464 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional regulation of heat shock proteins and ascorbate peroxidase by CtHsfA2b from African bermudagrass conferring heat tolerance in Arabidopsis. Wang X; Huang W; Yang Z; Liu J; Huang B Sci Rep; 2016 Jun; 6():28021. PubMed ID: 27320381 [TBL] [Abstract][Full Text] [Related]
8. The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes. Zhang Z; Yang C; Xi J; Wang Y; Guo J; Liu Q; Liu Y; Ma Y; Zhang J; Ma F; Li C Plant Cell; 2024 Sep; 36(9):3631-3653. PubMed ID: 38865439 [TBL] [Abstract][Full Text] [Related]
9. Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis. Li Y; Wu Q; Zhu L; Zhang R; Tong B; Wang Y; Han Y; Lu Y; Dou D; Tian Z; Zheng J; Zhang Y Planta; 2024 Jul; 260(3):61. PubMed ID: 39060400 [TBL] [Abstract][Full Text] [Related]
10. Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. Gu L; Jiang T; Zhang C; Li X; Wang C; Zhang Y; Li T; Dirk LMA; Downie AB; Zhao T Plant J; 2019 Oct; 100(1):128-142. PubMed ID: 31180156 [TBL] [Abstract][Full Text] [Related]
11. Molecular insights into sensing, regulation and improving of heat tolerance in plants. Saini N; Nikalje GC; Zargar SM; Suprasanna P Plant Cell Rep; 2022 Mar; 41(3):799-813. PubMed ID: 34676458 [TBL] [Abstract][Full Text] [Related]
12. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Gong B; Yi J; Wu J; Sui J; Khan MA; Wu Z; Zhong X; Seng S; He J; Yi M Plant Cell Rep; 2014 Sep; 33(9):1519-33. PubMed ID: 24874231 [TBL] [Abstract][Full Text] [Related]
13. Integration of C3H15-mediated transcriptional and post-transcriptional regulation confers plant thermotolerance in Arabidopsis. Chai G; Liu H; Zhang Y; Wang C; Xu H; He G; Meng J; Tang X; Wang D; Zhou G Plant J; 2024 Aug; 119(3):1558-1569. PubMed ID: 38865085 [TBL] [Abstract][Full Text] [Related]
14. WHIRLY1 Regulates HSP21.5A Expression to Promote Thermotolerance in Tomato. Zhuang K; Gao Y; Liu Z; Diao P; Sui N; Meng Q; Meng C; Kong F Plant Cell Physiol; 2020 Jan; 61(1):169-177. PubMed ID: 31596474 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptome analysis of heat stress responses of Clematis lanuginosa and Clematis crassifolia. Qian R; Hu Q; Ma X; Zhang X; Ye Y; Liu H; Gao H; Zheng J BMC Plant Biol; 2022 Mar; 22(1):138. PubMed ID: 35321648 [TBL] [Abstract][Full Text] [Related]
16. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. Rao S; Gupta A; Bansal C; Sorin C; Crespi M; Mathur S Plant J; 2022 Oct; 112(1):7-26. PubMed ID: 36050841 [TBL] [Abstract][Full Text] [Related]
17. Transcriptional Profiling Reveals a Time-of-Day-Specific Role of REVEILLE 4/8 in Regulating the First Wave of Heat Shock-Induced Gene Expression in Arabidopsis. Li B; Gao Z; Liu X; Sun D; Tang W Plant Cell; 2019 Oct; 31(10):2353-2369. PubMed ID: 31358650 [TBL] [Abstract][Full Text] [Related]
18. Transcription factor CaHDZ15 promotes pepper basal thermotolerance by activating HEAT SHOCK FACTORA6a. Mou S; He W; Jiang H; Meng Q; Zhang T; Liu Z; Qiu A; He S Plant Physiol; 2024 Apr; 195(1):812-831. PubMed ID: 38270532 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression. Qian J; Chen J; Liu YF; Yang LL; Li WP; Zhang LM Genet Mol Res; 2014 Feb; 13(1):1233-43. PubMed ID: 24634180 [TBL] [Abstract][Full Text] [Related]
20. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. Chauhan H; Khurana N; Agarwal P; Khurana JP; Khurana P PLoS One; 2013; 8(11):e79577. PubMed ID: 24265778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]