BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 33809374)

  • 1. Beneficial Impacts of Incorporating the Non-Natural Amino Acid Azulenyl-Alanine into the Trp-Rich Antimicrobial Peptide buCATHL4B.
    D'Souza AR; Necelis MR; Kulesha A; Caputo GA; Makhlynets OV
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33809374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of a melittin analog containing a non-natural tryptophan analog.
    Ridgway Z; Picciano AL; Gosavi PM; Moroz YS; Angevine CE; Chavis AE; Reiner JE; Korendovych IV; Caputo GA
    Biopolymers; 2015 Jul; 104(4):384-394. PubMed ID: 25670241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Role of Aromatic Residues in the Antimicrobial Peptide BuCATHL4B.
    Necelis MR; Santiago-Ortiz LE; Caputo GA
    Protein Pept Lett; 2021; 28(4):388-402. PubMed ID: 32798369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer.
    Bi X; Wang C; Dong W; Zhu W; Shang D
    J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of terminal arrangement of tryptophan on biological activity of symmetric α-helix-forming peptides.
    Shao C; Li W; Lai Z; Akhtar MU; Dong N; Shan A; Ma D
    Chem Biol Drug Des; 2019 Dec; 94(6):2051-2063. PubMed ID: 31442359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell specificity, anti-inflammatory activity, and plausible bactericidal mechanism of designed Trp-rich model antimicrobial peptides.
    Park KH; Nan YH; Park Y; Kim JI; Park IS; Hahm KS; Shin SY
    Biochim Biophys Acta; 2009 May; 1788(5):1193-203. PubMed ID: 19285481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity.
    Zhu X; Zhang L; Wang J; Ma Z; Xu W; Li J; Shan A
    Acta Biomater; 2015 May; 18():155-67. PubMed ID: 25735802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the membrane interaction mechanism and antibacterial properties of chensinin-1b.
    Sun Y; Dong W; Sun L; Ma L; Shang D
    Biomaterials; 2015 Jan; 37():299-311. PubMed ID: 25453959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity.
    Kim H; Jang JH; Kim SC; Cho JH
    J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarities and differences for membranotropic action of three unnatural antimicrobial peptides.
    Oliva R; Chino M; Lombardi A; Nastri F; Notomista E; Petraccone L; Del Vecchio P
    J Pept Sci; 2020 Aug; 26(8):e3270. PubMed ID: 32558092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization.
    Shang D; Zhang Q; Dong W; Liang H; Bi X
    Acta Biomater; 2016 Mar; 33():153-65. PubMed ID: 26804205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxy-tryptophan containing derivatives of tritrpticin: modification of antimicrobial activity and membrane interactions.
    Arias M; Jensen KV; Nguyen LT; Storey DG; Vogel HJ
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):277-88. PubMed ID: 25178967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design of tryptophan-rich antimicrobial peptides with enhanced antimicrobial activities and specificities.
    Yu HY; Huang KC; Yip BS; Tu CH; Chen HL; Cheng HT; Cheng JW
    Chembiochem; 2010 Nov; 11(16):2273-82. PubMed ID: 20865718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective antimicrobial activity of a peptide mutant Cbf-14-2 against penicillin-resistant bacteria based on its unnatural amino acids.
    Kang W; Liu H; Ma L; Wang M; Wei S; Sun P; Jiang M; Guo M; Zhou C; Dou J
    Eur J Pharm Sci; 2017 Jul; 105():169-177. PubMed ID: 28522372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity.
    Zhu X; Dong N; Wang Z; Ma Z; Zhang L; Ma Q; Shan A
    Acta Biomater; 2014 Jan; 10(1):244-57. PubMed ID: 24021230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.
    Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY
    Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities.
    Yang ST; Shin SY; Hahm KS; Kim JI
    Int J Antimicrob Agents; 2006 Apr; 27(4):325-30. PubMed ID: 16563706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of mirror-like peptides with alanine regulation.
    Li W; Tan T; Xu W; Xu L; Dong N; Ma D; Shan A
    Amino Acids; 2016 Feb; 48(2):403-17. PubMed ID: 26385363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.