These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 33809711)
1. Biological Applications of Severely Plastically Deformed Nano-Grained Medical Devices: A Review. Kalantari K; Saleh B; Webster TJ Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33809711 [TBL] [Abstract][Full Text] [Related]
2. An assessment of ultra fine grained 316L stainless steel for implant applications. Muley SV; Vidvans AN; Chaudhari GP; Udainiya S Acta Biomater; 2016 Jan; 30():408-419. PubMed ID: 26518104 [TBL] [Abstract][Full Text] [Related]
3. On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions. Gong N; Hu C; Hu B; An B; Misra RDK J Mech Behav Biomed Mater; 2020 Jan; 101():103433. PubMed ID: 31539734 [TBL] [Abstract][Full Text] [Related]
4. Random spectrum fatigue performance of severely plastically deformed titanium for implant dentistry applications. Rittel D; Shemtov-Yona K; Lapovok R J Mech Behav Biomed Mater; 2018 Jul; 83():94-101. PubMed ID: 29684777 [TBL] [Abstract][Full Text] [Related]
5. Deformation behavior and properties of severe plastic deformation techniques for bulk materials: A review. Zayed EM; Shazly M; El-Sabbagh A; El-Mahallawy NA Heliyon; 2023 Jun; 9(6):e16700. PubMed ID: 37346339 [TBL] [Abstract][Full Text] [Related]
6. In vitro fibroblast response to ultra fine grained titanium produced by a severe plastic deformation process. Kim TN; Balakrishnan A; Lee BC; Kim WS; Dvorankova B; Smetana K; Park JK; Panigrahi BB J Mater Sci Mater Med; 2008 Feb; 19(2):553-7. PubMed ID: 17619956 [TBL] [Abstract][Full Text] [Related]
7. Mechanical and biological behavior of ultrafine-grained Ti alloy aneurysm clip processed using high-pressure torsion. Um HY; Park BH; Ahn DH; Abd El Aal MI; Park J; Kim HS J Mech Behav Biomed Mater; 2017 Apr; 68():203-209. PubMed ID: 28187320 [TBL] [Abstract][Full Text] [Related]
8. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? Serhan H; Slivka M; Albert T; Kwak SD Spine J; 2004; 4(4):379-87. PubMed ID: 15246296 [TBL] [Abstract][Full Text] [Related]
9. Combined severe plastic deformation processing of commercial purity titanium enables superior fatigue resistance for next generation implants. Kopp A; Werner J; Kröger N; Weirich TE; D'Elia F Biomater Adv; 2024 Feb; 157():213756. PubMed ID: 38211508 [TBL] [Abstract][Full Text] [Related]
10. Biological response of chemically treated surface of the ultrafine-grained Ti-6Al-7Nb alloy for biomedical applications. de Oliveira DP; Toniato TV; Ricci R; Marciano FR; Prokofiev E; Valiev RZ; Lobo AO; Jorge Júnior AM Int J Nanomedicine; 2019; 14():1725-1736. PubMed ID: 30880976 [TBL] [Abstract][Full Text] [Related]
11. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. Bekmurzayeva A; Duncanson WJ; Azevedo HS; Kanayeva D Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():1073-1089. PubMed ID: 30274039 [TBL] [Abstract][Full Text] [Related]
12. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy. Park CH; Lee CS; Kim YJ; Jang JH; Suh JY; Park JW Clin Oral Implants Res; 2011 Jul; 22(7):735-742. PubMed ID: 21121961 [TBL] [Abstract][Full Text] [Related]