These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33809797)

  • 1. Exploring EEG Characteristics to Identify Emotional Reactions under Videogame Scenarios.
    Martínez-Tejada LA; Puertas-González A; Yoshimura N; Koike Y
    Brain Sci; 2021 Mar; 11(3):. PubMed ID: 33809797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effects of acute high altitude hypoxia on EEG power in different emotional states].
    Chen Z; Zhang GB; Zhou D; Cheng X; Zhu LL; Fan M; Wang DM; Zhao YQ
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2020 Nov; 36(6):556-561. PubMed ID: 33719257
    [No Abstract]   [Full Text] [Related]  

  • 3. EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal Mutual Information method.
    Candra H; Yuwono M; Chai R; Nguyen HT; Su S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():463-466. PubMed ID: 29059910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of emotional states in EEG signals using multi-frequency power spectrum and functional connectivity patterns.
    Kumar H; Ganapathy N; Puthankattil SD; Swaminathan R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():280-283. PubMed ID: 36085917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing emotions from EEG subbands using wavelet analysis.
    Candra H; Yuwono M; Handojoseno A; Chai R; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6030-3. PubMed ID: 26737666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Exact Valence and Arousal Values from EEG.
    Galvão F; Alarcão SM; Fonseca MJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm.
    Moctezuma LA; Abe T; Molinas M
    Sci Rep; 2022 Mar; 12(1):3523. PubMed ID: 35241745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Method of Automated EEG Signals' Selection Using Reversed Correlation Algorithm for Improved Classification of Emotions.
    Wosiak A; Dura A
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33321895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-trial EEG-based emotion recognition using kernel Eigen-emotion pattern and adaptive support vector machine.
    Liu YH; Wu CT; Kao YH; Chen YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4306-9. PubMed ID: 24110685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-Based Emotion Recognition Using Quadratic Time-Frequency Distribution.
    Alazrai R; Homoud R; Alwanni H; Daoud MI
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontal EEG Asymmetry and Middle Line Power Difference in Discrete Emotions.
    Zhao G; Zhang Y; Ge Y
    Front Behav Neurosci; 2018; 12():225. PubMed ID: 30443208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emotion processing in Parkinson's disease: an EEG spectral power study.
    Yuvaraj R; Murugappan M; Omar MI; Ibrahim NM; Sundaraj K; Mohamad K; Satiyan M
    Int J Neurosci; 2014 Jul; 124(7):491-502. PubMed ID: 24168328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelet-based study of valence-arousal model of emotions on EEG signals with LabVIEW.
    Guzel Aydin S; Kaya T; Guler H
    Brain Inform; 2016 Jun; 3(2):109-117. PubMed ID: 27747605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-based Emotion Recognition Using Sub-Band Time-Delay Correlations.
    Alskafi FA; Khandoker AH; Marzbanrad F; Jelinek HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-based emotion classification using LSTM under new paradigm.
    Ahmed MZI; Sinha N
    Biomed Phys Eng Express; 2021 Sep; 7(6):. PubMed ID: 34534973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring EEG microstates for affective computing: decoding valence and arousal experiences during video watching
    Shen X; Hu X; Liu S; Song S; Zhang D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():841-846. PubMed ID: 33018116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroencephalograph Emotion Classification Using a Novel Adaptive Ensemble Classifier Considering Personality Traits.
    Khajeh Hosseini MS; Pourmir Firoozabadi M; Badie K; Azad Fallah P
    Basic Clin Neurosci; 2023; 14(5):687-700. PubMed ID: 38628840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of EEG variables to measure the affective dimensions of arousal and valence related to the vision of emotional pictures.
    Gaeta G; Susac A; Supek S; Babiloni F; Vecchiato G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2518-21. PubMed ID: 26736804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Valence Low Arousal Stimuli: An Effective Candidate for EEG-Based Biometrics Authentication System.
    Jeswani J; Govarthan PK; Selvaraj A; Prince A; Thomas J; Kalathe M; Subramaniam V; Agastinose Ronickom JF
    Stud Health Technol Inform; 2023 May; 302():257-261. PubMed ID: 37203658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolution Neural Network.
    Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2019; 258():140. PubMed ID: 30942731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.