These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 33809961)
1. An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates. Park S; Kim D; Song J; Joo JWJ Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809961 [TBL] [Abstract][Full Text] [Related]
2. Identifying Candidate Genes Associated with Sporadic Amyotrophic Lateral Sclerosis via Integrative Analysis of Transcriptome-Wide Association Study and Messenger RNA Expression Profile. Li P; Cheng S; Wen Y; Cheng B; Liu L; Wu X; Ao X; Huang Z; Liao C; Li S; Zhang F; Zhang Z Cell Mol Neurobiol; 2023 Jan; 43(1):327-338. PubMed ID: 35038056 [TBL] [Abstract][Full Text] [Related]
3. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Xiao L; Yuan Z; Jin S; Wang T; Huang S; Zeng P Front Genet; 2020; 11():587243. PubMed ID: 33329728 [TBL] [Abstract][Full Text] [Related]
5. Identifying novel genes for amyotrophic lateral sclerosis by integrating human brain proteomes with genome-wide association data. Gu XJ; Su WM; Dou M; Jiang Z; Duan QQ; Wang H; Ren YL; Cao B; Wang Y; Chen YP J Neurol; 2023 Aug; 270(8):4013-4023. PubMed ID: 37148340 [TBL] [Abstract][Full Text] [Related]
6. Shared Genetics and Comorbid Genes of Amyotrophic Lateral Sclerosis and Parkinson's Disease. Tian Y; Ma G; Li H; Zeng Y; Zhou S; Wang X; Shan S; Xu Y; Xiong J; Cheng G Mov Disord; 2023 Oct; 38(10):1813-1821. PubMed ID: 37534731 [TBL] [Abstract][Full Text] [Related]
7. A Genome-wide Expression Association Analysis Identifies Genes and Pathways Associated with Amyotrophic Lateral Sclerosis. Du Y; Wen Y; Guo X; Hao J; Wang W; He A; Fan Q; Li P; Liu L; Liang X; Zhang F Cell Mol Neurobiol; 2018 Apr; 38(3):635-639. PubMed ID: 28639078 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide genetic links between amyotrophic lateral sclerosis and autoimmune diseases. Li CY; Yang TM; Ou RW; Wei QQ; Shang HF BMC Med; 2021 Feb; 19(1):27. PubMed ID: 33541344 [TBL] [Abstract][Full Text] [Related]
9. RNA editing regulates glutamatergic synapses in the frontal cortex of a molecular subtype of Amyotrophic Lateral Sclerosis. Karagianni K; Dafou D; Xanthopoulos K; Sklaviadis T; Kanata E Mol Med; 2024 Jul; 30(1):101. PubMed ID: 38997636 [TBL] [Abstract][Full Text] [Related]
11. Causal Inference of Genetic Variants and Genes in Amyotrophic Lateral Sclerosis. Pan S; Liu X; Liu T; Zhao Z; Dai Y; Wang YY; Jia P; Liu F Front Genet; 2022; 13():917142. PubMed ID: 35812739 [TBL] [Abstract][Full Text] [Related]
12. ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia. Swindell WR; Kruse CPS; List EO; Berryman DE; Kopchick JJ J Transl Med; 2019 May; 17(1):170. PubMed ID: 31118040 [TBL] [Abstract][Full Text] [Related]
13. Pathway analysis of two amyotrophic lateral sclerosis GWAS highlights shared genetic signals with Alzheimer's disease and Parkinson's disease. Shang H; Liu G; Jiang Y; Fu J; Zhang B; Song R; Wang W Mol Neurobiol; 2015 Feb; 51(1):361-9. PubMed ID: 24647822 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide association analysis reveals potential genetic correlation and causality between circulating inflammatory proteins and amyotrophic lateral sclerosis. Shen J; Gu X; Xiao C; Yan H; Feng Y; Li X Aging (Albany NY); 2024 May; 16(11):9470-9484. PubMed ID: 38819224 [TBL] [Abstract][Full Text] [Related]
15. Harnessing transcriptomic signals for amyotrophic lateral sclerosis to identify novel drugs and enhance risk prediction. Pain O; Jones A; Al Khleifat A; Agarwal D; Hramyka D; Karoui H; Kubica J; Llewellyn DJ; Ranson JM; Yao Z; Iacoangeli A; Al-Chalabi A Heliyon; 2024 Aug; 10(15):e35342. PubMed ID: 39170265 [TBL] [Abstract][Full Text] [Related]
16. A Knowledge-Based Machine Learning Approach to Gene Prioritisation in Amyotrophic Lateral Sclerosis. Bean DM; Al-Chalabi A; Dobson RJB; Iacoangeli A Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32575372 [TBL] [Abstract][Full Text] [Related]
17. Integrative gene-tissue microarray-based approach for identification of human disease biomarkers: application to amyotrophic lateral sclerosis. Kudo LC; Parfenova L; Vi N; Lau K; Pomakian J; Valdmanis P; Rouleau GA; Vinters HV; Wiedau-Pazos M; Karsten SL Hum Mol Genet; 2010 Aug; 19(16):3233-53. PubMed ID: 20530642 [TBL] [Abstract][Full Text] [Related]
18. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
19. New insights into the gene expression associated to amyotrophic lateral sclerosis. Recabarren-Leiva D; Alarcón M Life Sci; 2018 Jan; 193():110-123. PubMed ID: 29241710 [TBL] [Abstract][Full Text] [Related]
20. Difficulty in determining the association of a single nucleotide polymorphism in the ZNF512B gene with the risk and prognosis of amyotrophic lateral sclerosis. Tetsuka S Rinsho Shinkeigaku; 2017 Aug; 57(8):417-424. PubMed ID: 28740063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]