BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33810011)

  • 1. Deep Learning for Novel Antimicrobial Peptide Design.
    Wang C; Garlick S; Zloh M
    Biomolecules; 2021 Mar; 11(3):. PubMed ID: 33810011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of antimicrobial peptides targeting Gram-negative bacteria.
    Huynh L; Velásquez J; Rabara R; Basu S; Nguyen HB; Gupta G
    Comput Biol Chem; 2021 Jun; 92():107475. PubMed ID: 33813188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria.
    Bhattacharjya S; Straus SK
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32796755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria.
    Luo X; Ding L; Ye X; Zhu W; Zhang K; Li F; Jiang H; Zhao Z; Chen Z
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34064808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of new truncated derivatives based on direct and reverse mirror repeats of first six residues of Caerin 4 antimicrobial peptide and evaluation of their activity and cytotoxicity.
    Madanchi H; Sardari S; Shajiee H; Taherian S; Ashkar M; Johari B; Shabani AA; Sharafi S
    Chem Biol Drug Des; 2020 Aug; 96(2):801-811. PubMed ID: 32259385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potent Activity of Hybrid Arthropod Antimicrobial Peptides Linked by Glycine Spacers.
    Tonk M; Valdés JJ; Cabezas-Cruz A; Vilcinskas A
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing antimicrobial peptides using deep learning and molecular dynamic simulations.
    Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-guided discovery and design of non-hemolytic peptides.
    Plisson F; Ramírez-Sánchez O; Martínez-Hernández C
    Sci Rep; 2020 Oct; 10(1):16581. PubMed ID: 33024236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides.
    Wani MA; Garg P; Roy KK
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2397-2408. PubMed ID: 34632545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EcDBS1R4, an Antimicrobial Peptide Effective against
    Makowski M; Felício MR; Fensterseifer ICM; Franco OL; Santos NC; Gonçalves S
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33265989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-perfectly Amphipathic α-Helical Structure Containing the XXYXX Sequence Improves the Biological Activity of Bovine α
    Gu L; Sun C; Chen L; Pang S; Hussain MA; Jiang C; Ma J; Jiang Z; Hou J
    J Agric Food Chem; 2020 Jul; 68(28):7520-7529. PubMed ID: 32569466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs.
    Agbale CM; Sarfo JK; Galyuon IK; Juliano SA; Silva GGO; Buccini DF; Cardoso MH; Torres MDT; Angeles-Boza AM; de la Fuente-Nunez C; Franco OL
    Biochemistry; 2019 Sep; 58(36):3802-3812. PubMed ID: 31448597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a deep generative model produces novel and diverse functional peptides against microbial resistance.
    Mao J; Guan S; Chen Y; Zeb A; Sun Q; Lu R; Dong J; Wang J; Cao D
    Comput Struct Biotechnol J; 2023; 21():463-471. PubMed ID: 36618982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting antimicrobial peptides by exploring the mutual information of their sequences.
    Tripathi V; Tripathi P
    J Biomol Struct Dyn; 2020 Oct; 38(17):5037-5043. PubMed ID: 31760879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against
    Yan J; Zhang B; Zhou M; Campbell-Valois FX; Siu SWI
    mSystems; 2023 Aug; 8(4):e0034523. PubMed ID: 37431995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation State of Synergistic Antimicrobial Peptides.
    Remington JM; Liao C; Sharafi M; Ste Marie EJ; Ferrell JB; Hondal RJ; Wargo MJ; Schneebeli ST; Li J
    J Phys Chem Lett; 2020 Nov; 11(21):9501-9506. PubMed ID: 33108730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A QSAR modeling approach for predicting myeloid antimicrobial peptides with high sequence similarity.
    Waghu FH; Gawde U; Gomatam A; Coutinho E; Idicula-Thomas S
    Chem Biol Drug Des; 2020 Dec; 96(6):1408-1417. PubMed ID: 32569448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic expression of antimicrobial peptides from black soldier fly enhance resistance against entomopathogenic bacteria in the silkworm, Bombyx mori.
    Xu J; Luo X; Fang G; Zhan S; Wu J; Wang D; Huang Y
    Insect Biochem Mol Biol; 2020 Dec; 127():103487. PubMed ID: 33068728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.