These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related]
6. 3D printing in biotechnology-An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Heuer C; Preuß JA; Habib T; Enders A; Bahnemann J Eng Life Sci; 2022 Dec; 22(12):744-759. PubMed ID: 36514534 [TBL] [Abstract][Full Text] [Related]
7. 3D Printed Microfluidics. Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017 [TBL] [Abstract][Full Text] [Related]
8. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips. Mi S; Du Z; Xu Y; Sun W J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609 [TBL] [Abstract][Full Text] [Related]
9. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. Li X; Wang M; Davis TP; Zhang L; Qiao R Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605 [TBL] [Abstract][Full Text] [Related]
10. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759 [TBL] [Abstract][Full Text] [Related]
11. Accessing microfluidics through feature-based design software for 3D printing. Shankles PG; Millet LJ; Aufrecht JA; Retterer ST PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Männel MJ; Baysak E; Thiele J Molecules; 2021 May; 26(9):. PubMed ID: 34068649 [TBL] [Abstract][Full Text] [Related]
14. Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate. Kotz F; Mader M; Dellen N; Risch P; Kick A; Helmer D; Rapp BE Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961823 [TBL] [Abstract][Full Text] [Related]
15. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Musgrove HB; Catterton MA; Pompano RR Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850 [TBL] [Abstract][Full Text] [Related]
16. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip. Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097 [TBL] [Abstract][Full Text] [Related]
17. Functional 3D printing: Approaches and bioapplications. Palmara G; Frascella F; Roppolo I; Chiappone A; Chiadò A Biosens Bioelectron; 2021 Mar; 175():112849. PubMed ID: 33250333 [TBL] [Abstract][Full Text] [Related]
18. 3D Printing Solutions for Microfluidic Chip-To-World Connections. van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347 [TBL] [Abstract][Full Text] [Related]
19. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips. Kotz F; Helmer D; Rapp BE Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271 [TBL] [Abstract][Full Text] [Related]
20. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer. Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]