These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33810122)

  • 1. Proposals and Comparisons from One-Sensor EEG and EOG Human-Machine Interfaces.
    Laport F; Iglesia D; Dapena A; Castro PM; Vazquez-Araujo FJ
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EOG-Based Human-Computer Interface: 2000-2020 Review.
    Belkhiria C; Boudir A; Hurter C; Peysakhovich V
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals.
    Zhou Y; He S; Huang Q; Li Y
    IEEE Trans Biomed Eng; 2020 Oct; 67(10):2881-2892. PubMed ID: 32070938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid BCI web browser based on EEG and EOG signals.
    Shenghong He ; Tianyou Yu ; Zhenghui Gu ; Yuanqing Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1006-1009. PubMed ID: 29060044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EOG-Based Human-Machine Interface for Wheelchair Control.
    Huang Q; He S; Wang Q; Gu Z; Peng N; Li K; Zhang Y; Shao M; Li Y
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2023-2032. PubMed ID: 28767359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M; Cortese M; Cempini M; Mellinger J; Vitiello N; Soekadar SR
    J Neuroeng Rehabil; 2014 Dec; 11():165. PubMed ID: 25510922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User activity recognition system to improve the performance of environmental control interfaces: a pilot study with patients.
    Bertomeu-Motos A; Ezquerro S; Barios JA; Lledó LD; Domingo S; Nann M; Martin S; Soekadar SR; Garcia-Aracil N
    J Neuroeng Rehabil; 2019 Jan; 16(1):10. PubMed ID: 30646915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An EOG-Based Human-Machine Interface to Control a Smart Home Environment for Patients With Severe Spinal Cord Injuries.
    Zhang R; He S; Yang X; Wang X; Li K; Huang Q; Yu Z; Zhang X; Tang D; Li Y
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):89-100. PubMed ID: 29993413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer.
    He S; Zhou Y; Yu T; Zhang R; Huang Q; Chuai L; Mustafa MU; Gu Z; Yu ZL; Tan H; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):519-530. PubMed ID: 31870987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of Graphical User Interface in the design of P300 based Brain-Computer Interface systems.
    Ratcliffe L; Puthusserypady S
    Comput Biol Med; 2020 Feb; 117():103599. PubMed ID: 32072963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable Asynchronous Brain-Computer Interface Based on EEG-EOG Signals With Fewer Channels.
    Hu L; Zhu J; Chen S; Zhou Y; Song Z; Li Y
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):504-513. PubMed ID: 37616137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface.
    Peng Y; Wang Z; Wong CM; Nan W; Rosa A; Xu P; Wan F; Hu Y
    J Neural Eng; 2020 Jul; 17(4):045006. PubMed ID: 32408272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HMM based automated wheelchair navigation using EOG traces in EEG.
    Aziz F; Arof H; Mokhtar N; Mubin M
    J Neural Eng; 2014 Oct; 11(5):056018. PubMed ID: 25188730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal human-machine interface based on a brain-computer interface and an electrooculography interface.
    Iáñez E; Ùbeda A; Azorín JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4572-5. PubMed ID: 22255355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y; Wongsawat Y; Parnichkun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1360-3. PubMed ID: 21096331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-machine interfaces based on EMG and EEG applied to robotic systems.
    Ferreira A; Celeste WC; Cheein FA; Bastos-Filho TF; Sarcinelli-Filho M; Carelli R
    J Neuroeng Rehabil; 2008 Mar; 5():10. PubMed ID: 18366775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.