These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33810122)

  • 21. An FPGA-Embedded Brain-Computer Interface System to Support Individual Autonomy in Locked-In Individuals.
    Palumbo A; Ielpo N; Calabrese B
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the use of electrooculogram for efficient human computer interfaces.
    Usakli AB; Gurkan S; Aloise F; Vecchiato G; Babiloni F
    Comput Intell Neurosci; 2010; 2010():135629. PubMed ID: 19841687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J; Zhang Y; Cichocki A; Matsuno F
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A P300-based Brain Computer Interface Using Stereo-electroencephalography Signals.
    Huang W; Yu T; Xiao J; Guo Q; Li Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3062-3066. PubMed ID: 31946534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced perception of user intention by combining EEG and gaze-tracking for brain-computer interfaces (BCIs).
    Choi JS; Bang JW; Park KR; Whang M
    Sensors (Basel); 2013 Mar; 13(3):3454-72. PubMed ID: 23486216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wheelchair control for disabled patients using EMG/EOG based human machine interface: a review.
    Kaur A
    J Med Eng Technol; 2021 Jan; 45(1):61-74. PubMed ID: 33302770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Automatic removal algorithm of electrooculographic artifacts in non-invasive brain-computer interface based on independent component analysis].
    Song H; Xu S; Liu G; Liu J; Xiong P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1074-1081. PubMed ID: 36575075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface.
    Iáñez E; Azorin JM; Perez-Vidal C
    PLoS One; 2013; 8(7):e67099. PubMed ID: 23843986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Asynchronous Hybrid Spelling Approach Based on EEG-EOG Signals for Chinese Character Input.
    Yu Y; Liu Y; Yin E; Jiang J; Zhou Z; Hu D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1292-1302. PubMed ID: 31071045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human-Machine Interface: Multiclass Classification by Machine Learning on 1D EOG Signals for the Control of an Omnidirectional Robot.
    Pérez-Reynoso FD; Rodríguez-Guerrero L; Salgado-Ramírez JC; Ortega-Palacios R
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Custom EOG-Based HMI Using Neural Network Modeling to Real-Time for the Trajectory Tracking of a Manipulator Robot.
    Perez Reynoso FD; Niño Suarez PA; Aviles Sanchez OF; Calva Yañez MB; Vega Alvarado E; Portilla Flores EA
    Front Neurorobot; 2020; 14():578834. PubMed ID: 33117141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multimodal approach to estimating vigilance using EEG and forehead EOG.
    Zheng WL; Lu BL
    J Neural Eng; 2017 Apr; 14(2):026017. PubMed ID: 28102833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facial Motion Capture System Based on Facial Electromyogram and Electrooculogram for Immersive Social Virtual Reality Applications.
    Kim C; Cha HS; Kim J; Kwak H; Lee W; Im CH
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concentration on performance with P300-based BCI systems: a matter of interface features.
    da Silva-Sauer L; Valero-Aguayo L; de la Torre-Luque A; Ron-Angevin R; Varona-Moya S
    Appl Ergon; 2016 Jan; 52():325-32. PubMed ID: 26360225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards an Accessible Use of a Brain-Computer Interfaces-Based Home Care System through a Smartphone.
    Sun KT; Hsieh KL; Syu SR
    Comput Intell Neurosci; 2020; 2020():1843269. PubMed ID: 32908470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items.
    Kubacki A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton.
    Kilicarslan A; Prasad S; Grossman RG; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5606-9. PubMed ID: 24111008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward a Brain-Computer Interface- and Internet of Things-Based Smart Ward Collaborative System Using Hybrid Signals.
    Cai X; Pan J
    J Healthc Eng; 2022; 2022():6894392. PubMed ID: 35480157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.