These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33810145)

  • 1. Cyclic Deformation Induced Residual Stress Evolution and 3D Short Fatigue Crack Growth Investigated by Advanced Synchrotron Tomography Techniques.
    Dönges B; Syha M; Hüsecken AK; Pietsch U; Ludwig W; Krupp U; Christ HJ
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33810145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue.
    Zhang T; Jiang J; Britton B; Shollock B; Dunne F
    Proc Math Phys Eng Sci; 2016 May; 472(2189):20150792. PubMed ID: 27279765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel.
    Tang L; Qian C; Ince A; Zheng J; Li H; Han Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30072599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites.
    Pohl PM; Kümmel F; Schunk C; Serrano-Munoz I; Markötter H; Göken M; Höppel HW
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments.
    Amjad K; Asquith D; Patterson EA; Sebastian CM; Wang WC
    R Soc Open Sci; 2017 Nov; 4(11):171100. PubMed ID: 29291095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires.
    Toribio J; Matos JC; González B; Escuadra J
    Materials (Basel); 2015 Nov; 8(11):7589-7597. PubMed ID: 28793661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Crack Obstruction Mechanisms in Crofer
    Fischer T; Kuhn B
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Residual Stresses on Fatigue Crack Growth: A Numerical Study Based on Cumulative Plastic Strain at the Crack Tip.
    Neto DM; Borges MF; Sérgio ER; Antunes FV
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel.
    Jambor M; Vojtek T; Pokorný P; Šmíd M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33801909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life.
    Noraphaiphipaksa N; Manonukul A; Kanchanomai C
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications.
    Javier Gil F; Planell JA; Padrós A; Aparicio C
    Dent Mater; 2007 Apr; 23(4):486-91. PubMed ID: 16620949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel.
    Shang H; Lin Z; Gao H; Shan X; Zhan J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Crack Growth Rates and Crack Tip Opening Loads in CT Specimens Made of SDSS and Manufactured Using WAAM.
    Sales A; Khanna A; Hughes J; Yin L; Kotousov A
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-field Strain Measurements for Microstructurally Small Fatigue Crack Propagation Using Digital Image Correlation Method.
    Malitckii E; Remes H; Lehto P; Bossuyt S
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30735166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.