These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 33810419)

  • 21. Analysis of Endonasal Endoscopic Transsphenoidal (EET) surgery pathway and workspace for path guiding robot design.
    Chalongwongse S; Chumnanvej S; Suthakorn J
    Asian J Surg; 2019 Aug; 42(8):814-822. PubMed ID: 30709589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotic Ear Surgery.
    Riojas KE; Labadie RF
    Otolaryngol Clin North Am; 2020 Dec; 53(6):1065-1075. PubMed ID: 33127040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research progress and development trend of surgical robot and surgical instrument arm.
    Zhang W; Li H; Cui L; Li H; Zhang X; Fang S; Zhang Q
    Int J Med Robot; 2021 Oct; 17(5):e2309. PubMed ID: 34270175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of haptic feedback in tele-operated robotic surgery.
    El Rassi I; El Rassi JM
    J Med Eng Technol; 2020 Jul; 44(5):247-254. PubMed ID: 32573288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The i
    Berthet-Rayne P; Gras G; Leibrandt K; Wisanuvej P; Schmitz A; Seneci CA; Yang GZ
    Ann Biomed Eng; 2018 Oct; 46(10):1663-1675. PubMed ID: 29948372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotic surgery: new robots and finally some real competition!
    Rao PP
    World J Urol; 2018 Apr; 36(4):537-541. PubMed ID: 29427003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Developments of surgical assist robot: current and future].
    Kawashima K
    Nihon Rinsho; 2016 Jan; 74(1):109-13. PubMed ID: 26793889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Robot-assisted Minimally Invasive Surgery in the age of surgical data science].
    Haidegger T; Sándor J
    Magy Seb; 2021 Nov; 74(4):127-135. PubMed ID: 34821582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of Robot-Based Surgery for Otosclerosis Surgery.
    Nguyen Y; Bernardeschi D; Sterkers O
    Otolaryngol Clin North Am; 2018 Apr; 51(2):475-485. PubMed ID: 29502730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.
    Beyl T; Nicolai P; Mönnich H; Raczkowksy J; Wörn H
    Stud Health Technol Inform; 2012; 173():58-63. PubMed ID: 22356957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction: the rise of the robots in spinal surgery.
    Theodore N; Arnold PM; Mehta AI
    Neurosurg Focus; 2018 Jul; 45(VideoSuppl1):Intro. PubMed ID: 29963916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robotics in the neurosurgical treatment of glioma.
    Sutherland GR; Maddahi Y; Gan LS; Lama S; Zareinia K
    Surg Neurol Int; 2015; 6(Suppl 1):S1-8. PubMed ID: 25722932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.