BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33810494)

  • 21. A genetic characterization of Korean waxy maize (Zea mays L.) landraces having flowering time variation by RNA sequencing.
    Yi G; Shin H; Yu SH; Park JE; Kang T; Huh JH
    Sci Rep; 2019 Dec; 9(1):20023. PubMed ID: 31882845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating maize genetic erosion in modernized smallholder agriculture.
    van Heerwaarden J; Hellin J; Visser RF; van Eeuwijk FA
    Theor Appl Genet; 2009 Sep; 119(5):875-88. PubMed ID: 19578830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detecting (trans)gene flow to landraces in centers of crop origin: lessons from the case of maize in Mexico.
    Cleveland DA; Soleri D; Cuevas FA; Crossa J; Gepts P
    Environ Biosafety Res; 2005; 4(4):197-208; discussion 209-15. PubMed ID: 16827547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early allelic selection in maize as revealed by ancient DNA.
    Jaenicke-Després V; Buckler ES; Smith BD; Gilbert MT; Cooper A; Doebley J; Pääbo S
    Science; 2003 Nov; 302(5648):1206-8. PubMed ID: 14615538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic and phenotypic diversity in 2000 years old maize (Zea mays L.) samples from the Tarapacá region, Atacama Desert, Chile.
    Vidal Elgueta A; Hinojosa LF; Pérez MF; Peralta G; Rodríguez MU
    PLoS One; 2019; 14(1):e0210369. PubMed ID: 30699124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [On-farm conservation and utilization of paddy rice, wheat and maize landrace varieties in 15 unique ethnic groups in Yunnan, China].
    Xu FR; Yang YY; Zhang EL; A XX; Tang CF; Dong C; Zhang FF; Liu X; Dai LY
    Yi Chuan; 2012 Nov; 34(11):1466-74. PubMed ID: 23208144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.).
    Boukail S; Macharia M; Miculan M; Masoni A; Calamai A; Palchetti E; Dell'Acqua M
    BMC Plant Biol; 2021 Jul; 21(1):330. PubMed ID: 34243721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of beneficial haplotypes for complex traits in maize landraces.
    Mayer M; Hölker AC; González-Segovia E; Bauer E; Presterl T; Ouzunova M; Melchinger AE; Schön CC
    Nat Commun; 2020 Oct; 11(1):4954. PubMed ID: 33009396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003-2004).
    Ortiz-García S; Ezcurra E; Schoel B; Acevedo F; Soberón J; Snow AA
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12338-43. PubMed ID: 16093316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding.
    Strigens A; Schipprack W; Reif JC; Melchinger AE
    PLoS One; 2013; 8(2):e57234. PubMed ID: 23451190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.
    Yamasaki M; Tenaillon MI; Bi IV; Schroeder SG; Sanchez-Villeda H; Doebley JF; Gaut BS; McMullen MD
    Plant Cell; 2005 Nov; 17(11):2859-72. PubMed ID: 16227451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds.
    Beckett TJ; Morales AJ; Koehler KL; Rocheford TR
    PLoS One; 2017; 12(12):e0189277. PubMed ID: 29236738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic Analysis of Teosinte Alleles for Kernel Composition Traits in Maize.
    Karn A; Gillman JD; Flint-Garcia SA
    G3 (Bethesda); 2017 Apr; 7(4):1157-1164. PubMed ID: 28188181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microsatellite-based genetic diversity among accessions of maize landraces from Sinaloa in México.
    Pineda-Hidalgo KV; Méndez-Marroquín KP; Alvarez EV; Chávez-Ontiveros J; Sánchez-Peña P; Garzón-Tiznado JA; Vega-García MO; López-Valenzuela JA
    Hereditas; 2013 Dec; 150(4):53-9. PubMed ID: 24325344
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic characterization and seed viability test in ex-situ conserved Ethiopian cultivated barley (Hordeum vulgare L.) landraces.
    Gadissa F; Gudeta TB
    BMC Plant Biol; 2023 Dec; 23(1):613. PubMed ID: 38044430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular evaluation of orphan Afghan common wheat (Triticum aestivum L.) landraces collected by Dr. Kihara using single nucleotide polymorphic markers.
    Manickavelu A; Jighly A; Ban T
    BMC Plant Biol; 2014 Nov; 14():320. PubMed ID: 25432399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morpho-physiological traits and SSR markers-based analysis of relationships and genetic diversity among fodder maize landraces in India.
    Choudhary M; Singh A; Das MM; Kumar P; Naliath R; Singh V; Kumar B; Rakshit S
    Mol Biol Rep; 2023 Aug; 50(8):6829-6841. PubMed ID: 37392281
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition.
    Muraya MM; Schmutzer T; Ulpinnis C; Scholz U; Altmann T
    PLoS One; 2015; 10(7):e0132120. PubMed ID: 26151830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological and genetic diversity of maize landraces along an altitudinal gradient in the Southern Andes.
    Rivas JG; Gutierrez AV; Defacio RA; Schimpf J; Vicario AL; Hopp HE; Paniego NB; Lia VV
    PLoS One; 2022; 17(12):e0271424. PubMed ID: 36542628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.