These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33810595)

  • 1. Up-Scaling of Thermomechanically Induced Laves Phase Precipitation in High Performance Ferritic (HiperFer) Stainless Steels.
    Pöpperlová J; Fan X; Kuhn B; Krupp U
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Treatment of High-Performance Ferritic (HiperFer) Steels.
    Kuhn B; Talik M
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification, size classification and evolution of Laves phase precipitates in high chromium, fully ferritic steels.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2017 Oct; 101():221-231. PubMed ID: 28825996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure evolution and dislocation behaviour in high chromium, fully ferritic steels strengthened by intermetallic Laves phases.
    Lopez Barrilao J; Kuhn B; Wessel E
    Micron; 2018 May; 108():11-18. PubMed ID: 29544163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Crack Obstruction Mechanisms in Crofer
    Fischer T; Kuhn B
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Temperature Cyclic Oxidation Behavior and Microstructure Evolution of W- and Ce-Containing 18Cr-Mo Type Ferritic Stainless Steel.
    Zheng J; Feng Y; Zhao Y; Chen L
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation of W-Rich Laves Phase Nanoparticles in Tempered Martensite Ferritic Steel During Long-Term Aging at Elevated Temperature.
    Kim C
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4489-4493. PubMed ID: 31968503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Laves phase in Crofer 22 H stainless steel.
    Hsiao ZW; Kuhn B; Chen D; Singheiser L; Kuo JC; Lin DY
    Micron; 2015 Jul; 74():59-64. PubMed ID: 25974858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.
    Hsiao ZW; Chen D; Kuo JC; Lin DY
    J Microsc; 2017 Apr; 266(1):35-47. PubMed ID: 28066885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A first step towards computational design of W-containing self-healing ferritic creep resistant steels.
    Yu H; Xu W; van der Zwaag S
    Sci Technol Adv Mater; 2020 Sep; 21(1):641-652. PubMed ID: 33061837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Holding Time on Dissimilar Transient Liquid-Phase-Bonded Properties of Super-Ferritic Stainless Steel 446 to Martensitic Stainless Steel 410 Using a Nickel-Based Interlayer.
    Hafizi M; Kasiri-Asgarani M; Naalchian M; Bakhsheshi-Rad HR; Berto F
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laves Phase Evolution in China Low-Activation Martensitic (CLAM) Steel during Long-Term Aging at 550 °C.
    Yang L; Zhao F; Ding W
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31906175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laves Phase in a 12% Cr Martensitic/Ferritic Steel: Evolution and Characterization of Nanoparticles at 650 °C.
    Sanhueza JP; Rojas D; Prat O; Garcia J; Melendrez M
    J Nanosci Nanotechnol; 2019 May; 19(5):2971-2976. PubMed ID: 30501807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution.
    Yu Y; Shironita S; Souma K; Umeda M
    Heliyon; 2018 Nov; 4(11):e00958. PubMed ID: 30839865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalog of NIMS creep data sheets.
    Sawada K; Kimura K; Abe F; Taniuchi Y; Sekido K; Nojima T; Ohba T; Kushima H; Miyazaki H; Hongo H; Watanabe T
    Sci Technol Adv Mater; 2019; 20(1):1131-1149. PubMed ID: 32082436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature in-situ TEM straining of the interaction with dislocations and particles for Cu-added ferritic stainless steel.
    Kobayashi S; Kaneko K; Yamada K; Kikuchi M; Kanno N; Hamada J
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i28-i29. PubMed ID: 25359827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates.
    Song G; Sun Z; Li L; Xu X; Rawlings M; Liebscher CH; Clausen B; Poplawsky J; Leonard DN; Huang S; Teng Z; Liu CT; Asta MD; Gao Y; Dunand DC; Ghosh G; Chen M; Fine ME; Liaw PK
    Sci Rep; 2015 Nov; 5():16327. PubMed ID: 26548303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precipitates and Particles Coarsening of 9Cr-1.7W-0.4Mo-Co Ferritic Heat-Resistant Steel after Isothermal Aging.
    Gao Q; Zhang Y; Zhang H; Li H; Qu F; Han J; Lu C; Wu B; Lu Y; Ma Y
    Sci Rep; 2017 Jul; 7(1):5859. PubMed ID: 28725002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Secondary Phase Precipitation on the Corrosion Behavior of Duplex Stainless Steels.
    Chan KW; Tjong SC
    Materials (Basel); 2014 Jul; 7(7):5268-5304. PubMed ID: 28788129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of a Two-Stage Heat-Treatment on the Microstructural and Mechanical Properties of a Maraging Steel.
    Simm TH; Sun L; Galvin DR; Hill P; Rawson M; Birosca S; Gilbert EP; Bhadeshia H; Perkins K
    Materials (Basel); 2017 Nov; 10(12):. PubMed ID: 29168800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.